精英家教网 > 高中数学 > 题目详情

【题目】已知点在椭圆 上, 是椭圆的一个焦点.

)求椭圆的方程;

)椭圆C上不与点重合的两点 关于原点O对称,直线 分别交轴于 两点.求证:以为直径的圆被直线截得的弦长是定值.

【答案】.(见解析

【解析】试题分析:依题意,得到,利用定义得到,即可求解椭圆的标准方程;

Ⅱ)设 根据直线方程,求解的坐标,可得,利用 求得的值,即可得到弦长为定值

试题解析:

依题意,椭圆的另一个焦点为,且

因为

所以

所以椭圆的方程为

)证明由题意可知 两点与点不重合.

因为 两点关于原点对称,

所以设

设以为直径的圆与直线交于两点,

所以

直线

所以

直线

所以

所以

因为所以

所以

因为

所以所以

所以 所以

所以以为直径的圆被直线截得的弦长是定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,平面⊥平面

(Ⅰ)求证: ⊥平面

(Ⅱ)求证:

(Ⅲ)若点在棱上,且平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且不等式对任意的恒成立.

(Ⅰ) 求的关系;

(Ⅱ) 若数列满足:为数列的前项和.求证:

(Ⅲ) 若在数列中,为数列的前项和.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x-2sin2x-a.

①若f(x)=0在x∈R上有解,则a的取值范围是______

②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,

PB=

(Ⅰ)求证:BC⊥PB;

(Ⅱ)求二面角P一CD一A的余弦值;

(Ⅲ)若点E在棱PA上,且BE//平面PCD,求线段BE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最小正周期;

(2)当时,

(ⅰ)求函数的单调递减区间;

(ⅱ)求函数的最大值最小值,并分别求出使该函数取得最大值最小值时的自变量的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆 上, 是椭圆的一个焦点.

)求椭圆的方程;

)椭圆C上不与点重合的两点 关于原点O对称,直线 分别交轴于 两点.求证:以为直径的圆被直线截得的弦长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x-3)2+(y-4)2=4.

(Ⅰ)过原点O(0,0)作圆C的切线,切点分别为H、K,求直线HK的方程;

(Ⅱ)设定点M(-3,8),动点N在圆C上运动,以CM,CN为领边作平行四边形MCNP,求点P的轨迹方程;

(Ⅲ)平面上有两点A(1,0),B(-1,0),点P是圆C上的动点,求|AP|2+|BP|2的最小值;

(Ⅳ)若Q是x轴上的动点,QR,QS分别切圆C于R,S两点.试问:直线RS是否恒过定点?若是,求出定点坐标,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合是集合 的一个含有个元素的子集.

(Ⅰ)当时,

(i)写出方程的解

(ii)若方程至少有三组不同的解,写出的所有可能取值.

(Ⅱ)证明:对任意一个,存在正整数使得方程 至少有三组不同的解.

查看答案和解析>>

同步练习册答案