精英家教网 > 高中数学 > 题目详情
18.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数,0<φ<π),曲线C2与曲线C1关于原点对称,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C3的极坐标方程为ρ=2(0<θ<π),过极点O的直线l分别与曲线C1,C2,C3相交于点A,B,C.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)求|AC|•|BC|的取值范围.

分析 (I)利用同角三角函数的关系消元得到C1的普通方程,在将普通方程转化为极坐标方程;
(II)求出三条曲线的普通方程,设直线方程为y=kx(k>0),求出A,B,C的坐标,利用三点的位置关系得出|AC|•|BC|=(|OC|-|OA|)•(|OA|+|OC|)=|OC|2-|OA|2.将|AC|•|BC|转化为关于k的函数.

解答 解:(I)曲线C1的直角坐标方程为(x-1)2+y2=1,即x2+y2-2x=0(0<y≤1).
∴曲线C1的极坐标方程为ρ2-2ρcosθ=0,即ρ=2cosθ(0<θ<π).
(II)曲线C2的普通方程为(x+1)2+y2=1(-1≤y<0),
曲线C3的普通方程为x2+y2=4(0<y≤2).
设直线l的方程为y=kx(k>0).
则A($\frac{2}{{k}^{2}+1}$,$\frac{2k}{{k}^{2}+1}$),B(-$\frac{2}{{k}^{2}+1}$,-$\frac{2k}{{k}^{2}+1}$),C($\frac{2}{\sqrt{{k}^{2}+1}}$,$\frac{2k}{\sqrt{{k}^{2}+1}}$).
∵A,B关于原点对称,∴|BC|=|OB|+|OC|=|OA|+|OC|,
∴|AC|•|BC|=(|OC|-|OA|)•(|OA|+|OC|)=|OC|2-|OA|2
=$\frac{4+4{k}^{2}}{{k}^{2}+1}$-$\frac{4+4{k}^{2}}{({k}^{2}+1)^{2}}$=4-$\frac{4}{{k}^{2}+1}$.
设f(k)=4-$\frac{4}{{k}^{2}+1}$,则f(k)在(0,+∞)上单调递增,
∵f(0)=0,$\underset{lim}{k→+∞}f(k)=4$,
∴0<f(k)<4.
即|AC|•|BC|的取值范围时(0,4).

点评 本题考查了参数方程,极坐标方程与普通方程的转化,直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,则实数a的取值范围是(  )
A.[1,e]B.$(1+\frac{1}{e},e]$C.(1,e]D.$[1+\frac{1}{e},e]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\overrightarrow b=(sin{75°},cos{105°})$,$|\overrightarrow a|=3|\overrightarrow b|$,且$(\sqrt{3}\overrightarrow a+\overrightarrow b)•\overrightarrow b=-2$,则 $cos<\overrightarrow a,\overrightarrow b>$=(  )
A.$-\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某同学在电脑上打出如下若干个“★”和“○”:★○★○○★○○○★○○○○★○○○○○★…若以此规律继续打下去,则前2015个图形的“★”的个数是(  )
A.60B.61C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是等差数列,an+1>an,a1•a10=160,a3+a8=37.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项,第4项,第8项,第2n项,按原来的顺序组成一个新数列{bn},求Sn=b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下)

(Ⅰ)体育成绩大于或等于70分的学生常被成为“体育良好”,已知该校高一年级有1000名学生,试估计,高一全年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,至少有1人体育成绩在[60,70)的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x,y>0,4x+$\frac{1}{x}$+y+$\frac{9}{y}$=26,则4x+y的最大值与最小值之差为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m},是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=3x3-ax2+x-5.
(1)若函数f(x)的单调减区间为($\frac{1}{9}$,1),求实数a的值;
(2)若函数f(x)在R上单调递增,求实数a的取值范围.

查看答案和解析>>

同步练习册答案