精英家教网 > 高中数学 > 题目详情
8.已知e为自然对数的底数,若对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,则实数a的取值范围是(  )
A.[1,e]B.$(1+\frac{1}{e},e]$C.(1,e]D.$[1+\frac{1}{e},e]$

分析 由x+y2ey-a=0成立,解得y2ey=a-x,根据题意可得:a-1≥(-1)2e-1,且a-0≤12×e1,解出并且验证等号是否成立即可得出.

解答 解:由x+y2ey-a=0成立,解得y2ey=a-x,
∴对任意的x∈[0,1],总存在唯一的y∈[-1,1],使得x+y2ey-a=0成立,
∴a-1≥(-1)2e-1,且a-0≤12×e1
解得$1+\frac{1}{e}$≤a≤e,其中a=1+$\frac{1}{e}$时,y存在两个不同的实数,因此舍去,a的取值范围是$(1+\frac{1}{e},e]$.
故选:B.

点评 本题考查了函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=|x-3|,g(x)=-|x+4|+2m.
(1)当a>0时,求关于x的不等式f(x)+1-a>0(a∈R)的解集;
(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在三角形ABC中,$\overrightarrow{BC}=3\overrightarrow{BD},\overrightarrow{AB}•\overrightarrow{AC}=\frac{1}{2},∠A=\frac{π}{3}$,则$|\overrightarrow{AD}|$的最小值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.斜率为1的直线与椭圆x2+4y2=4交于A,B两点,则|AB|的最大值为$\frac{4\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和${S_n}=2{n^2}-n$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={({-1})^n}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合M={x|x<0},N={x|x2-x-2<0},则M∩N=(  )
A.{x|-1<x<0}B.{x|-2<x<0}C.{x|x<2}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=lnx-\frac{a(x-1)}{x+1},a∈R$.
(Ⅰ)若x=3是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(Ⅲ)设m,n为正实数,且m>n,求证:$\frac{m-n}{lnm-lnn}<\frac{m+n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正方体ABCD-A1B1C1D1中,M,N,P分别为棱AB,BC,C1D1的中点.
求证:(1)AP∥平面C1MN;
(2)平面B1BDD1⊥平面C1MN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数,0<φ<π),曲线C2与曲线C1关于原点对称,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C3的极坐标方程为ρ=2(0<θ<π),过极点O的直线l分别与曲线C1,C2,C3相交于点A,B,C.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)求|AC|•|BC|的取值范围.

查看答案和解析>>

同步练习册答案