精英家教网 > 高中数学 > 题目详情
13.已知数列{an}是等差数列,an+1>an,a1•a10=160,a3+a8=37.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项,第4项,第8项,第2n项,按原来的顺序组成一个新数列{bn},求Sn=b1+b2+…+bn

分析 (1)设等差数列{an}的公差为d,由an+1>an,a1•a10=160,a3+a8=37.利用等差数列的通项公式即可得出.
(2)bn=${a}_{{2}^{n}}$=3×2n+2.再利用等比数列的前n项和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵an+1>an,a1•a10=160,a3+a8=37.
∴$\left\{\begin{array}{l}{{a}_{1}({a}_{1}+9d)=160}\\{2{a}_{1}+9d=37}\end{array}\right.$,化为${a}_{1}^{2}$-37a1+160=0,
解得a1=32,或5.
∴$\left\{\begin{array}{l}{{a}_{1}=32}\\{d=-3}\end{array}\right.$(舍去),$\left\{\begin{array}{l}{{a}_{1}=5}\\{d=3}\end{array}\right.$.
∴an=5+3(n-1)=3n+2.
(2)bn=${a}_{{2}^{n}}$=3×2n+2.
∴Sn=b1+b2+…+bn=3(21+22+…+2n)+2n
=$3×\frac{2({2}^{n}-1)}{2-1}$+2n
=3×2n+1-6+2n.

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和${S_n}=2{n^2}-n$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={({-1})^n}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}}$)离y轴最近的零点与最大值均在抛物线y=-$\frac{3}{2}$x2+$\frac{1}{2}$x+1上,则f(x)=(  )
A.$f(x)=sin(\frac{1}{6}x+\frac{π}{3})$B.$f(x)=sin(\frac{1}{2}x+\frac{π}{3})$C.$f(x)=sin(\frac{π}{2}x+\frac{π}{3})$D.$f(x)=sin(\frac{π}{2}x+\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=6cos2$\frac{ωx}{2}$+$\sqrt{3}$sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=$\frac{4\sqrt{15}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某农场去年粮食平均亩产量817斤,从今年起的5年内,计划平均每年比上一年提高7%,约经过3年可以提高到亩产量1000斤(保留一个有效数字)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数,0<φ<π),曲线C2与曲线C1关于原点对称,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C3的极坐标方程为ρ=2(0<θ<π),过极点O的直线l分别与曲线C1,C2,C3相交于点A,B,C.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)求|AC|•|BC|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左焦点、左顶点分别为F,C,过原点O的直线与两分支分别交于A,B(异于C点),若直线AF交BC于D点,且$\overrightarrow{AD}$=2$\overrightarrow{DF}$,则双曲线的离心率为(  )
A.2B.3C.4D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在数列{an}中,an=1+a+a2+…+an-1,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,且双曲线C的焦距为2c,定点G(0,c),若双曲线C上存在点P满足|PF|=|PG|,则双曲线的离心率的取值范围是(  )
A.($\sqrt{2}$,+∞)B.(1,$\sqrt{2}$)C.[$\sqrt{3}$,+∞)D.(1,$\sqrt{3}$)

查看答案和解析>>

同步练习册答案