精英家教网 > 高中数学 > 题目详情
8.某农场去年粮食平均亩产量817斤,从今年起的5年内,计划平均每年比上一年提高7%,约经过3年可以提高到亩产量1000斤(保留一个有效数字)

分析 设n后,由题意得到方程817(1+7%)n=1000,解方程即可

解答 解:设n年后亩产量到1000斤,由题意得到方程817(1+7%)n=1000,
即(1+7%)n≈1.22,
解得n≈3,
故3年后亩产量1000斤,
故答案为:3.

点评 本题主要考查增长率,关键是构建函数模型,从而得到方程,进而解决问题,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}(n∈N*)中,a1=1,a4=7,则数列{an}的通项公式an=2n-1;a2+a6+a10+…+a4n+10=(n+3)(4n+11).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={x|x2-x-6<0,x∈R},B={y|y=|x|-3,x∈A},则A∩B等于(  )
A.{x|0<x<3}B.{x|-1<x<0}C.{x|-2<x<0}D.{x|-3<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC中,边a,b,c的对角分别为A,B,C,且$a=\sqrt{6}$,$c=\sqrt{2}$,$A=\frac{2π}{3}$.
(Ⅰ)求B,C及△ABC的面积;
(Ⅱ)已知函数f(x)=sinBsin2πx+cosCcos2πx,把函数y=f(x)的图象向右平移$\frac{1}{4}$个单位,然后把所得函数图象上点的横坐标伸长为原来的2倍,纵坐标不变,即得函数y=g(x)的图象,求函数y=g(x)在[0,2]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$A(\sqrt{3},\frac{1}{2})$,离心率为$\frac{{\sqrt{3}}}{2}$,点F1,F2分别为其左、右焦点.
(1)求椭圆E的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点P,Q,且$\overrightarrow{OP}⊥\overrightarrow{OQ}$?若存在,求出该圆的方程,并求|PQ|的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是等差数列,an+1>an,a1•a10=160,a3+a8=37.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项,第4项,第8项,第2n项,按原来的顺序组成一个新数列{bn},求Sn=b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设an=n•2n(n∈N*),求数列{an}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{b}^{2}}=1$(b>0)的右焦点F2为圆心,2为半径的圆与双曲线的渐近线相交,则双曲线的离心率的范围是(  )
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,+∞)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}中,a1=2,an+1=2an+3.
(1)求数列{an}的通项an
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案