精英家教网 > 高中数学 > 题目详情
设函数f(x)在区间D上有定义,若对其中任意x1,x2(x1≠x2)恒有都有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)],则称f(x)是D上的“凹函数”,若f(x)=x|ax-4|(a≠0)在[2,3]上为“凹函数”,则a的取值范围是
 
考点:函数的值
专题:计算题,导数的综合应用
分析:由f(x)=x|ax-4|(a≠0)在[2,3]上为“凹函数”可知f′(x)在[2,3]上单调递增,从而求解.
解答: 解:∵f(x)=x|ax-4|(a≠0)在[2,3]上为“凹函数”,
∴f′(x)在[2,3]上单调递增,
∴①若a≤
4
3

则f(x)=x(4-ax),
f′(x)=-2ax+4;
则-2a>0,
故a<0;
②若
4
3
<a<2,
则f(x)=x|ax-4|=
x(4-ax),2≤x≤
4
a
x(ax-4),
4
a
≤x≤3

f′(x)=-2ax+4已经不能单调递增,故不成立;
③当a≥2时,
f(x)=x(ax-4),f′(x)=2ax-4;
故2a>0,
解得a≥2;
故a≥2或a<0.
故答案为:a≥2或a<0.
点评:本题考查了导数的综合应用,同时考查了学生对新定义的接受能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=cos2(x+
π
12
)+sinxcosx,求:
(1)f(x)的最值;
(2)f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

P是抛物线x2=4y上一点,抛物线的焦点为F,且|PF|=5,则P点的纵坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用诱导公式求sin(x-
π
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx+
1
x
+ax(a∈R),求f(x)在[2,+∞)上是单调函数时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是(  )
A、棱柱B、棱台
C、棱柱与棱锥的组合体D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

两个正数a,b的等差中项是3,一个等比中项是2
2
,且a>b,则双曲线
x2
b2
-
y2
a2
=1的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a2=1,前n项和为Sn,且Sn=
n(an-a1)
2
.(其中n∈N*)
(1)文:求a1
理:求数列{an}的通项公式;
(2)文:求数列{an}的通项公式;
理:求
lim
n→+∞
Sn
n2

(3)设lgbn=
an+1
3n
,问是否存在正整数p、q(其中1<p<q),使得b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为选拔选手参加“中国汉字听写大会”,某中学举行了一次“汉字听写大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中的x、y的值;
(理科)(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3名学生参加“中国汉字听写大会”,设随机变量X表示所抽取的3名学生中得分在[80,90,)内的学生人数,求随机变量X的分布列及数学期望.
(文科)(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“中国汉字听写大会”,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

同步练习册答案