分析 a,b,c成等比数列,可得b2=ac.由cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$,又A∈(0,π),即可得出.
解答 解:∵a,b,c成等比数列,∴b2=ac.
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$,当且仅当a=c=b时取等号,
又A∈(0,π),
∴0<$A≤\frac{π}{3}$.
∴B的最大值为:$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 本题考查了余弦定理、三角函数的单调性与值域、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | ±2 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | (-∞,4) | C. | [0,4] | D. | (0,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0.1,0.2,0.3) | B. | (0,0,0.001) | C. | (5,0,0) | D. | (0,0.01,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+i | B. | -1+i | C. | 1+2i | D. | 1-2i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com