精英家教网 > 高中数学 > 题目详情
19.i为虚数单位,已知复数z满足$\frac{2}{1+i}=\overline z+i$,则z=(  )
A.1+iB.-1+iC.1+2iD.1-2i

分析 由$\frac{2}{1+i}=\overline z+i$,得$\overline{z}=\frac{2}{1+i}-i$,然后利用复数代数形式的乘除运算化简$\overline{z}$,则z可求.

解答 解:由$\frac{2}{1+i}=\overline z+i$,
得$\overline{z}=\frac{2}{1+i}-i$=$\frac{2(1-i)}{(1+i)(1-i)}-i=1-i-i=1-2i$,
则z=1+2i.
故选:C.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=-x3+ax2-x-1在R上是单调函数,则实数a的取值范围是(  )
A.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$B.$({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-\sqrt{3},\sqrt{3}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{2}}{2}$,点F是椭圆的左焦点,点A为椭圆的右顶点,点B为椭圆的上顶点,且S△ABF=$\frac{\sqrt{2}+1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l:x-2y-1=0交椭圆E于P,Q两点,求△FPQ的周长和面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则角B的最大值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\frac{{e}^{x}+{e}^{-x}}{{e}^{x}-{e}^{-x}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={(x1,x2,x3,x4)|xi∈{-1,0,1},i=1,2,3,4},那么集合A中满足条件“$x_1^2+x_2^2+x_3^2+x_4^2≤4$”的元素个数为(  )
A.60B.65C.80D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,点M,N为长轴的两个端点,若在椭圆上存在点H,使${k_{MH}}{k_{NH}}∈(-\frac{1}{2},0)$,则离心率e的取值范围为(  )
A.$(\frac{{\sqrt{2}}}{2},1)$B.$(0,\frac{{\sqrt{2}}}{2})$C.$(\frac{{\sqrt{3}}}{2},1)$D.$(0,\frac{{\sqrt{3}}}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-a|
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若存在实数x,使不等式f(x)+f(x+5)<m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(5,m),$\overrightarrow{b}$=(2,-2)且($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{b}$,则m=(  )
A.-9B.9C.6D.-6

查看答案和解析>>

同步练习册答案