精英家教网 > 高中数学 > 题目详情
9.函数f(x)=-x3+ax2-x-1在R上是单调函数,则实数a的取值范围是(  )
A.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},+∞})$B.$({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$C.$[{-\sqrt{3},\sqrt{3}}]$D.$({-\sqrt{3},\sqrt{3}})$

分析 先求函数的导数,因为函数f(x)在(-∞,+∞)上是单调函数,所以在(-∞,+∞)上f′(x)≤0恒成立,再利用一元二次不等式的解得到a的取值范围即可.

解答 解:f(x)=-x3+ax2-x-1的导数为f′(x)=-3x2+2ax-1,
∵函数f(x)在(-∞,+∞)上是单调函数,
∴在(-∞,+∞)上f′(x)≤0恒成立,
即-3x2+2ax-1≤0恒成立,
∴△=4a2-12≤0,解得-$\sqrt{3}$≤a≤$\sqrt{3}$,
∴实数a的取值范围是[-$\sqrt{3}$,$\sqrt{3}$],
故选:C.

点评 本题主要考查函数的导数与单调区间的关系,以及恒成立问题的解法,属于导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的偶函数f(x)满足:当x∈[0,+∞)时,$f(x)=\left\{{\begin{array}{l}{2-x,x≥2}\\{{x^2}+1,0≤x<2}\end{array}}\right.$,则f[f(-2)]的值为(  )
A.1B.3C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A=$\left\{{x\left|{\frac{x}{x-1}≤0}\right.}\right\}$,B={x|x2<2x},则“x∈A∩B”是“x∈(0,1)”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{cos2πx,x≤0}\end{array}\right.$,则f($\frac{1}{2}$)+f(-$\frac{1}{2}$)的值等于(  )
A.0B.±2C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是某一几何体的三视图,则这个几何体的体积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式ax2-3x+2>0
(1)若a=-2,求上述不等式的解集;
(2)若上述不等式的解集为{x|x<1或x>b},求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆M的圆心M在x轴上,半径为1,直线l:被圆M所截的弦长为$\sqrt{3}$,且圆心M在直线l的下方.
(1)求圆M的方程;
(2)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,内角A,B,C所对的边分别a,b,c.已知a=2,b=6,A=30°,则能满足此条件的三角形的个数是0个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.i为虚数单位,已知复数z满足$\frac{2}{1+i}=\overline z+i$,则z=(  )
A.1+iB.-1+iC.1+2iD.1-2i

查看答案和解析>>

同步练习册答案