分析 (Ⅰ)由S△ABF=$\frac{\sqrt{2}+1}{2}$,可得$\frac{1}{2}(a+c)b$=$\frac{\sqrt{2}+1}{2}$,化为(a+c)b=$\sqrt{2}$+1,又$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2,联立解出即可得出.
(Ⅱ)直线x-2y-1=0与x轴交于(1,0)恰为椭圆E的右焦点F′,则△FPQ的周长为=4a.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程联立得,6y2+4y-1=0.可得|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$.于是△FPQ的面积为$\frac{1}{2}|F{F}^{′}|$×|y1-y2.
解答 解:(Ⅰ)F(-c,0),A(a,0),B(0,b),
由S△ABF=$\frac{\sqrt{2}+1}{2}$,可得$\frac{1}{2}(a+c)b$=$\frac{\sqrt{2}+1}{2}$,化为(a+c)b=$\sqrt{2}$+1,又$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2,
联立解得a=$\sqrt{2}$,b=c=1.
故椭圆E的方程为:$\frac{{x}^{2}}{2}+{y}^{2}$=1. …(6分)
(Ⅱ)直线x-2y-1=0与x轴交于(1,0)恰为椭圆E的右焦点F′,
则△FPQ的周长为=|FQ|+|QF′|+|FP|+|PF′|=4a=4$\sqrt{2}$.…(9分)
设P(x1,y1),Q(x2,y2).|
联立$\left\{\begin{array}{l}{x-2y-1=0}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$得,6y2+4y-1=0.
∴y1+y2=-$\frac{2}{3}$,y1•y2=-$\frac{1}{6}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{(-\frac{2}{3})^{2}-4×(-\frac{1}{6})}$=$\frac{\sqrt{10}}{3}$.
于是△FPQ的面积为$\frac{1}{2}|F{F}^{′}|$×|y1-y2|=$\frac{1}{2}×2×\frac{\sqrt{10}}{3}$=$\frac{\sqrt{10}}{3}$.…(12分)
点评 本题考查了椭圆的标准方程及其性质、三角形面积与周长计算公式、一元二次方程的根与系数的关系、弦长公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12$\sqrt{6}$ | B. | 6$\sqrt{6}$ | C. | 12$\sqrt{2}$ | D. | 6$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | (-∞,4) | C. | [0,4] | D. | (0,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+i | B. | -1+i | C. | 1+2i | D. | 1-2i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 12 | C. | 24 | D. | 48 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com