精英家教网 > 高中数学 > 题目详情
5.若双曲线$\frac{{x}^{2}}{16+k}$-$\frac{{y}^{2}}{8-k}$=1(-16<k<8)的一条渐近线方程是y=-$\sqrt{3}$x,点P(3,y0)与点Q是双曲线上关于坐标原点对称的两点,则四边形F1QF2P的面积是.
A.12$\sqrt{6}$B.6$\sqrt{6}$C.12$\sqrt{2}$D.6$\sqrt{2}$

分析 求出双曲线的渐近线方程,解方程可得k=-10,求出双曲线的a,b,c,代入点P,可得纵坐标,由题意可得四边形F1QF2P为平行四边形,求出三角形PF1F2的面积,即可得到所求面积.

解答 解:双曲线$\frac{{x}^{2}}{16+k}$-$\frac{{y}^{2}}{8-k}$=1(-16<k<8),
可得渐近线方程为y=±$\sqrt{\frac{8-k}{16+k}}$x,
由题意可得$\sqrt{\frac{8-k}{16+k}}$=$\sqrt{3}$,
解得k=-10,
即有双曲线的方程为$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{18}$=1,
可得c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{6+18}$=2$\sqrt{6}$,
设P在第一象限,代入双曲线方程可得
y0=3$\sqrt{2}$×$\sqrt{\frac{9}{6}-1}$=3.
即有P(3,3),
由P,Q关于原点对称,
可得四边形F1QF2P为平行四边形,
三角形PF1F2的面积为$\frac{1}{2}$|F2F1|•y0=$\frac{1}{2}$×4$\sqrt{6}$×3=6$\sqrt{6}$,
即有四边形F1QF2P的面积是2×6$\sqrt{6}$=12$\sqrt{6}$.
故选:A.

点评 本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查平行四边形面积的求法,注意运用三角形的面积求法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知△ABC外接圆直径为$\frac{4\sqrt{3}}{3}$,角A,B,C所对的边分别为a,b,c,C=60°.
(1)求$\frac{a+b+c}{sinA+sinB+sinC}$的值;
(2)若a+b=ab,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知倾斜角为α的直线l与直线x+2y-4=0垂直,则$cos(\frac{2017}{2}π-2α)$的值为(  )
A.2B.$-\frac{1}{2}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在(x-y)11的展开式中,求:
(1)通项Tr+1
(2)二项式系数最大的项;
(3)项的系数绝对值最大的项;
(4)项的系数最大的项;
(5)项的系数最小的项;
(6)二项式系数的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.PA、PB、PC是从P点引出的三条射线,每两条的夹角为60°,则直线PC与平面APB所成角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{2}}{2}$,点F是椭圆的左焦点,点A为椭圆的右顶点,点B为椭圆的上顶点,且S△ABF=$\frac{\sqrt{2}+1}{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若直线l:x-2y-1=0交椭圆E于P,Q两点,求△FPQ的周长和面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=loga(x-2016)+1(a>0且,a≠1)的图象恒过定点P,则点P的坐标是(2017,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\frac{{e}^{x}+{e}^{-x}}{{e}^{x}-{e}^{-x}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G为PC的中点,PA=AD=2,BC=DE,AB=3,CD=2$\sqrt{3}$,F,M分别为BC,EG上一点,且AF∥CD.
(1)求$\frac{ME}{MG}$的值,使得CM∥平面AFG;
(2)求直线CE与平面AFG所成角的正弦值.

查看答案和解析>>

同步练习册答案