精英家教网 > 高中数学 > 题目详情
15.已知△ABC外接圆直径为$\frac{4\sqrt{3}}{3}$,角A,B,C所对的边分别为a,b,c,C=60°.
(1)求$\frac{a+b+c}{sinA+sinB+sinC}$的值;
(2)若a+b=ab,求△ABC的面积.

分析 (1)由正弦定理可得:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R=$\frac{4\sqrt{3}}{3}$,再利用比例的性质即可得出.
(2)由正弦定理可得:$\frac{c}{sin6{0}^{°}}$=$\frac{4\sqrt{3}}{3}$,可得c=2.由余弦定理可得:22=a2+b2-2abcos60°,化为:a2+b2-ab=4.又a+b=ab,解得ab,可得△ABC的面积S=$\frac{1}{2}absinC$.

解答 解:(1)由正弦定理可得:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R=$\frac{4\sqrt{3}}{3}$,
∴$\frac{a+b+c}{sinA+sinB+sinC}$=2R=$\frac{4\sqrt{3}}{3}$.
(2)由正弦定理可得:$\frac{c}{sin6{0}^{°}}$=$\frac{4\sqrt{3}}{3}$,∴c=2.
由余弦定理可得:22=a2+b2-2abcos60°,化为:a2+b2-ab=4.
又a+b=ab,
∴(a+b)2-3ab=a2b2-3ab=4,
解得ab=4.
∴△ABC的面积S=$\frac{1}{2}absinC$=$\frac{1}{2}×4×sin6{0}^{°}$=$\sqrt{3}$.

点评 本题考查了三角形面积计算公式、正弦定理、余弦定理、比例的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知数列{an}是等差数列,若$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,且它的前n项和sn有最大值,则使得sn>0的n的最大值为(  )
A.11B.12C.21D.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=cos4x•cos2x•cosx•sinx的最大值和最小正周期依次为 (  )
A.$\frac{1}{8};\frac{π}{4}$B.$\frac{1}{4};\frac{π}{2}$C.$\frac{1}{2};π$D.1;2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题“若x≥1,则2x+1≥3”的逆否命题为(  )
A.若2x+1≥3,则x≥1B.若2x+1<3,则x<1C.若x≥1,则2x+1<3D.若x<1,则2x+1≥3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x∈N*|x2-5x-6<0},集合B={x|3≤x≤6},则A∩B=(  )
A.{1,2,3,4,5}B.{3,4,5}C.{3,4,5,6}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A=$\left\{{x\left|{\frac{x}{x-1}≤0}\right.}\right\}$,B={x|x2<2x},则“x∈A∩B”是“x∈(0,1)”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanα=$\sqrt{2}$,α为第三象限角,则$\sqrt{2}$sinα+cosα=(  )
A.-$\sqrt{2}$B.-2$\sqrt{2}$C.-$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是某一几何体的三视图,则这个几何体的体积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若双曲线$\frac{{x}^{2}}{16+k}$-$\frac{{y}^{2}}{8-k}$=1(-16<k<8)的一条渐近线方程是y=-$\sqrt{3}$x,点P(3,y0)与点Q是双曲线上关于坐标原点对称的两点,则四边形F1QF2P的面积是.
A.12$\sqrt{6}$B.6$\sqrt{6}$C.12$\sqrt{2}$D.6$\sqrt{2}$

查看答案和解析>>

同步练习册答案