精英家教网 > 高中数学 > 题目详情
1.已知数列{an}是等差数列,若$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,且它的前n项和sn有最大值,则使得sn>0的n的最大值为(  )
A.11B.12C.21D.22

分析 由$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,它们的前n项和Sn有最大可得a11>0,a11+a12<0,a12<0,从而有a1+a21=2a11>0,a1+a22=a11+a12<0,从而可求满足条件的n的值.

解答 解:由$\frac{{{a_{12}}}}{{{a_{11}}}}<-1$,它们的前n项和Sn有最大值,可得数列的d<0,
∴a11>0,a11+a12<0,a12<0,
∴a1+a21=2a11>0,a1+a22=a11+a12<0,
使得Sn>0的n的最大值n=21,
故选:C.

点评 本题主要考查了等差数列的性质在求解和的最值中应用,解题的关键是灵活利用和公式及等差数列的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在平行四边形ABCD中,AB=3,AD=4,则$\overrightarrow{AC}$•($\overrightarrow{AB}$-$\overrightarrow{AD}$)等于(  )
A.-7B.1C.7D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x+1|-|x|+a.
(1)若不等式f(x)≥0的解集为空集,求实数a的取值范围;
(2)若方程f(x)=x有三个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,BC=$\sqrt{3}$,AC=1,且B=$\frac{π}{6}$,则A=$\frac{π}{3}$或$\frac{2π}{3}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P是△ABC所在平面内一点,且$\overrightarrow{PA}$=-2$\overrightarrow{PB}$,在△ABC内任取一点Q,则Q落在△APC内的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AC=AB1
(1)证明:AB⊥B1C;
(2)若∠CAB1=90°,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知动点P(x,y)满足$\sqrt{{x}^{2}+(y+3)^{2}}$+$\sqrt{{x}^{2}+(y-3)^{2}}$=6,则动点P的轨迹是(  )
A.双曲线B.线段C.抛物线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC外接圆直径为$\frac{4\sqrt{3}}{3}$,角A,B,C所对的边分别为a,b,c,C=60°.
(1)求$\frac{a+b+c}{sinA+sinB+sinC}$的值;
(2)若a+b=ab,求△ABC的面积.

查看答案和解析>>

同步练习册答案