精英家教网 > 高中数学 > 题目详情
10.已知集合A={x∈N*|x2-5x-6<0},集合B={x|3≤x≤6},则A∩B=(  )
A.{1,2,3,4,5}B.{3,4,5}C.{3,4,5,6}D.{1,2,3,4,5,6}

分析 解不等式求出集合A,根据交集的定义写出A∩B.

解答 解:集合A={x∈N*|x2-5x-6<0}
={x∈N*|-1<x<6}
={1,2,3,4,5},
集合B={x|3≤x≤6},
所以A∩B={3,4,5}.
故选:B.

点评 本题考查了解一元二次不等式与交集的基本运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.一个几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,a,b,c分别为∠A、∠B、∠C、的对边,若a+c=2b,且$sinB=\frac{4}{5}$,当△ABC的面积为$\frac{3}{2}$时,则b=(  )
A.$\frac{{1+\sqrt{3}}}{2}$B.2C.4D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用两种语句写出求1 2+2 2+…+100 2的值的算法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算cos$\frac{π}{12}$sin$\frac{π}{12}$的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC外接圆直径为$\frac{4\sqrt{3}}{3}$,角A,B,C所对的边分别为a,b,c,C=60°.
(1)求$\frac{a+b+c}{sinA+sinB+sinC}$的值;
(2)若a+b=ab,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知命题p:方程x2-2x+m=0有两个不相等的实数根;命题q:关于x的函数y=(m+2)x-1是R上的单调增函数,若“p或q”是真命题,“p且q”是假命题,则实数m的取值范围为(-∞,-2]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.(理)若a=${∫}_{\frac{π}{2}}^{2}$sinxdx,b=∫01cosxdx,则a与b的关系是(  )
A.a+b=0B.a>bC.a<bD.a=b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.PA、PB、PC是从P点引出的三条射线,每两条的夹角为60°,则直线PC与平面APB所成角的余弦值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案