精英家教网 > 高中数学 > 题目详情
16.已知倾斜角为α的直线l与直线x+2y-4=0垂直,则$cos(\frac{2017}{2}π-2α)$的值为(  )
A.2B.$-\frac{1}{2}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

分析 由直线的垂直与斜率间的关系求得tanα=2.然后利用诱导公式及和倍角公式把cos($\frac{2017π}{2}$-2α)转化为含tanα的代数式得答案.

解答 解:直线x+2y-4=0的斜率为-$\frac{1}{2}$,
∵倾斜角为α的直线l与直线x+2y-4=0垂直,∴tanα=2.
则cos($\frac{2017π}{2}$-2α)=cos(1008π+$\frac{π}{2}$-2α)=cos($\frac{π}{2}$-2α)=sin2α=$\frac{2tanα}{1+ta{n}^{2}α}$=$\frac{2×2}{1+{2}^{2}}$=$\frac{4}{5}$.
故选:C

点评 本题考查三角函数的化简与求值,考查了直线的垂直与斜率间的关系,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)=cos4x•cos2x•cosx•sinx的最大值和最小正周期依次为 (  )
A.$\frac{1}{8};\frac{π}{4}$B.$\frac{1}{4};\frac{π}{2}$C.$\frac{1}{2};π$D.1;2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanα=$\sqrt{2}$,α为第三象限角,则$\sqrt{2}$sinα+cosα=(  )
A.-$\sqrt{2}$B.-2$\sqrt{2}$C.-$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是某一几何体的三视图,则这个几何体的体积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{b}$=(3,4),$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$的方向上的投影是-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆M的圆心M在x轴上,半径为1,直线l:被圆M所截的弦长为$\sqrt{3}$,且圆心M在直线l的下方.
(1)求圆M的方程;
(2)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{1-2i}{2+i}$=(  )
A.-iB.iC.1D.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若双曲线$\frac{{x}^{2}}{16+k}$-$\frac{{y}^{2}}{8-k}$=1(-16<k<8)的一条渐近线方程是y=-$\sqrt{3}$x,点P(3,y0)与点Q是双曲线上关于坐标原点对称的两点,则四边形F1QF2P的面积是.
A.12$\sqrt{6}$B.6$\sqrt{6}$C.12$\sqrt{2}$D.6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若直线ax+by=1(a,b都是正实数)与圆x2+y2=1相交于A,B两点,当△AOB(O是坐标原点)的面积最大时,a+b的最大值为2.

查看答案和解析>>

同步练习册答案