| A. | 2 | B. | $-\frac{1}{2}$ | C. | $\frac{4}{5}$ | D. | $-\frac{4}{5}$ |
分析 由直线的垂直与斜率间的关系求得tanα=2.然后利用诱导公式及和倍角公式把cos($\frac{2017π}{2}$-2α)转化为含tanα的代数式得答案.
解答 解:直线x+2y-4=0的斜率为-$\frac{1}{2}$,
∵倾斜角为α的直线l与直线x+2y-4=0垂直,∴tanα=2.
则cos($\frac{2017π}{2}$-2α)=cos(1008π+$\frac{π}{2}$-2α)=cos($\frac{π}{2}$-2α)=sin2α=$\frac{2tanα}{1+ta{n}^{2}α}$=$\frac{2×2}{1+{2}^{2}}$=$\frac{4}{5}$.
故选:C
点评 本题考查三角函数的化简与求值,考查了直线的垂直与斜率间的关系,是基础的计算题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8};\frac{π}{4}$ | B. | $\frac{1}{4};\frac{π}{2}$ | C. | $\frac{1}{2};π$ | D. | 1;2π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{2}$ | B. | -2$\sqrt{2}$ | C. | -$\sqrt{3}$ | D. | -2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12$\sqrt{6}$ | B. | 6$\sqrt{6}$ | C. | 12$\sqrt{2}$ | D. | 6$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com