精英家教网 > 高中数学 > 题目详情

数列的前n项和为满足等式
(Ⅰ)求的值;
(Ⅱ)求证:数列是等差数列;
(Ⅲ)若数列满足,求数列的前n项和
(Ⅳ)设,求证:

(Ⅰ)="8" (Ⅱ)见解析(III)(Ⅳ)见解析

解析试题分析:(Ⅰ)令n=1,代入即可; (Ⅱ)利用两边同除以n+1,构造等差数列即可; (III)由(II)可知数列是等差数列,求出的解析式,再利用求出的通项公式,代入,求出,再利用错位相减法求出数列的前n项和;(Ⅳ)由(III)知,代入,求出的通项公式,再求出其前n项和,最后利用放缩法得到所求结果.
试题解析:(Ⅰ)由已知:
(Ⅱ)∵,同除以n+1,则有:,所以是以3为首项,1为公差的等差数列.
(III)由(II)可知,  
 
 经检验,当n=1时也成立                  
解得:           
(Ⅳ)∵


 
考点:1.等差数列的定义; 2.错位相减法求n前项和;3.放缩法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列的前n项和为,且.
(Ⅰ)求数列的通项
(Ⅱ)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列 前项和为,且满足
(1)求数列的通项公式;
(2)求数列项和
(3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差.且分别是等比数列
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列对任意自然数均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前三项依次为、4、,前项和为,且.
(1)求的值;
(2)设数列的通项,证明数列是等差数列,并求其前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:对一切正整数n,有+…+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列的首项,前项和满足
(Ⅰ)求证:为等差数列,并求数列的通项公式;
(Ⅱ)记数列的前项和为,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足为常数),成等差数列.
(Ⅰ)求p的值及数列的通项公式;
(Ⅱ)设数列满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是一个等差数列,且
①求的通项;                   ②求项和的最大值。

查看答案和解析>>

同步练习册答案