精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3-x2,x∈[-1,2]
x-3,x∈(2,5]

(1)在如图给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间;  
(3)求f(x)的最小值.
考点:函数图象的作法,函数单调性的判断与证明
专题:函数的性质及应用
分析:由题意,画出分段函数的图象,利用图象读出单调区间和最大值.
解答: 解:(1)函数f(x)的图象如图所示;…(5分)
(2))由函数图象可知,函数f(x)的单调递增区间为[-1,0]和[2,5]….(9分)
(3)当x=2时,f(x)min=-1   …(12分)
点评:本题考查了分段函数图象的画法以及利用函数图象找出函数的单调区间和最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合I={0,1,2,3,4,5}.选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有(  )
A、49种B、50种
C、129种D、130种

查看答案和解析>>

科目:高中数学 来源: 题型:

北海市移动公司规定,打市内电话时,如果通话时间不超过3分钟,则收取通话费0.20元;如果通话时间超过3分钟,则超过部分以0.1元/分钟的标准收费.
(1)写出通话费用y(元)与通话时间t(分钟)的函数关系式;
(2)编写一个计算通话费用的程序,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
3
5
,an=2-
1
an-1
(n≥2,n∈N+).
(Ⅰ)求证:数列{
1
an-1
}为等差数列;
(Ⅱ)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(4,1)作直线l分别交x轴的正半轴和y轴的正半轴于点A、B,当△AOB(O为原点)的面积S最小时,求直线l的方程,并求出S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,当x≥0时,f(x)=x2-2x.
(1)求函数f(x)的解析式,并在给出的直角坐标系中画出y=f(x)的图象;
(2)若函数f(x)在区间[m,2m2-m]上单调递减,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集R,集合A={x||x-3|>6},B={x||x|>a,a∈N+},当a为何值时,
(1)A是B的充分而不必要条件;
(2)A是B的必要而不充分条件;
(3)A是B的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

有4个不同的球,四个不同的盒子,把球全部放入盒内(结果用数字表示).
(1)共有多少种放法?
(2)恰有一个盒子不放球,有多少种放法?
(3)恰有一个盒内放2个球,有多少种放法?
(4)恰有两个盒不放球,有多少种放法?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)在R上是奇函数,而且在[0,+∞)上是增函数
(1)求证:函数y=f(x)在(-∞,0)上也是增函数.
(2)如果f(
1
2
)=1
,解不等式f(2x+1)>-1.

查看答案和解析>>

同步练习册答案