精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)在R上是奇函数,而且在[0,+∞)上是增函数
(1)求证:函数y=f(x)在(-∞,0)上也是增函数.
(2)如果f(
1
2
)=1
,解不等式f(2x+1)>-1.
考点:奇偶性与单调性的综合,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)根据奇偶性和单调性之间的关系即可证明函数y=f(x)在(-∞,0)上也是增函数.
(2)根据奇偶性和单调性之间的关系将不等式f(2x+1)>-1进行等价转化即可得到结论..
解答: 解:(1)设x1<x2<0,则-x1>-x2>0,
∵f(x)在(0,+∞)上是增函数,
则f(-x1)>f(-x2),
解f(x)是奇函数,
∴-f(x1)>-f(x2),
即f(x1)<f(x2),
∴f(x)在(-∞,0)上为增函数.
(2)∵f(
1
2
)=1

∴f(-
1
2
)=-f(
1
2
)=-1,
则不等式f(2x+1)>-1等价为f(2x+1)>f(-
1
2
),
∵奇函数f(x)在[0,+∞)上是增函数,
∴f(x)在(-∞,+∞)上是增函数,
则2x+1>-
1
2

则x>-
3
2

即不等式的解集为{x|x>-
3
2
}.
点评:本题主要考查函数单调性的证明以及不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x2,x∈[-1,2]
x-3,x∈(2,5]

(1)在如图给定的直角坐标系内画出f(x)的图象;
(2)写出f(x)的单调递增区间;  
(3)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数m取什么值时,复数z=(m2-3m+2)+(m-2)i表示(1)实数?(2)虚数?(3)纯虚数?(4)点在第四象限?

查看答案和解析>>

科目:高中数学 来源: 题型:

为援助汶川灾后重建,对某项工程进行竞标,共有4家企业参与竞标.其中A企业来自辽宁省,B、C两家企业来自福建省,D企业来自河南省.此项工程需要两家企业联合施工,假设每家企业中标的概率相同.
(1)企业D中标的概率是多少?
(2)在中标的企业中,至少有一家来自福建省的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,且当x>0时,f(x)=2x-1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3-x2-3x.
(1)求f(x)在[-3,3]上的最大值;
(2)设方程f(x)=a有且仅有一个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为一半径为3米的水轮,水轮圆心O距水面5米,已知水轮每分钟逆时针转6圈,水轮上的固定点P到水面距离y(米)与时间x(秒)满足关系式y=Asin(ωx+φ)+b的函数形式,当水轮开始转动时P点位于距离水面最近的A点处,则A=
 
;b=
 
;ω=
 
;φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b
2x+1+a
是奇函数.
(1)求a,b的值;       
(2)判断f(x)的单调性,并用定义给出证明.
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.
(1)求甲、乙两个旅游团所选旅游线路不同的概率;
(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.

查看答案和解析>>

同步练习册答案