精英家教网 > 高中数学 > 题目详情
20.请阅读下列用For语句写出的算法,说明该算法的处理功能,并画出算法框图.

分析 分析程序中各变量、各语句的作用,根据流程图所示的顺序得出该程序的作用是累加并输出S的值,
结合题意画出算法框图即可.

解答 解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是累加并输出
S=1+2+3+…+20的值.
根据题意画出算法框图,如下.

点评 本题考查了根据流程图(或伪代码)写程序运行结果的应用问题,也考查了画出算法框图的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=π${∫}_{1}^{2}$(x-a)dx,则a=(  )
A.2B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若$\overrightarrow{DC}$=λ$\overrightarrow{AB}$,且向量$\overrightarrow{PC}$与$\overrightarrow{BD}$夹角的余弦值为$\frac{\sqrt{15}}{15}$.
(1)求实数λ的值;
(2)求直线PB与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{2x-5y+6≥0}\\{4x+9y-7≥0}\\{3x+2y-10≤0}\end{array}\right.$,则目标函数z=$\frac{y+3}{x+2}$的取值范围是[$\frac{1}{3}$,$\frac{8}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合M={1,2,3,…,n,n+1}(n≥2,n∈N),M1,M2,M3,…,MS(k)是M的k+1元子集(k∈N,k≤n)
(1)若n=9,k=1,且满足Mi(i∈{1,2,…,S(k)}中各元素之和是3的倍数,求S(k)的值;
(2)若满足M(i∈{1,2,…,S(k)}中必含有元素3,
①求S(k)的表达式;
②设bk=(-1)k+1$\frac{k+1}{n-k}$S(k+1),Tm=b0+b1+b2+…+bm(m∈N*,m≤n-1),求|$\frac{{T}_{m}}{{C}_{n-1}^{m}}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在图中的算法中,如果输入A=2016,B=98,则输出的结果是14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(x+$\frac{a}{\sqrt{x}}$)6的展开式中,常数项为15,则正数a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆x2+y2-x-6y+m=0与直线2x+y-3=0交于M、N两点,O为坐标原点,文是否存在实数m,使OM⊥ON,若存在,求出m的值若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$(a>b>0)过点(1,$\frac{\sqrt{3}}{2}$),它的两个短轴端点与右焦点构成等边三角形,点A在椭圆C上运动,点B在直线l:y=m(m>0)上,且∠AOB=90°(其中O为原点).
(Ⅰ)求椭圆C的方程:
(Ⅱ)若点O到直线AB的距离为定值,求m的值及|AB|的最小值.

查看答案和解析>>

同步练习册答案