精英家教网 > 高中数学 > 题目详情
11.如图,在四棱锥P-ABCD中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若$\overrightarrow{DC}$=λ$\overrightarrow{AB}$,且向量$\overrightarrow{PC}$与$\overrightarrow{BD}$夹角的余弦值为$\frac{\sqrt{15}}{15}$.
(1)求实数λ的值;
(2)求直线PB与平面PCD所成角的正弦值.

分析 (1)根据已知条件即可建立坐标系:以A为坐标原点,分别以边AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系,然后即可根据已知条件求出点P,A,B,C,D点的坐标,利用向量$\overrightarrow{PC}$与$\overrightarrow{BD}$夹角的余弦值为求出λ的值.
(2)求出平面PCD的法向量,利用向量夹角的余弦公式求解直线PB与平面PCD所成角的正弦值.

解答 解:以A为坐标原点,分别以AB,AD,AP为x,y,z轴建立如图所示空间直角坐标系;
则:A(0,0,0),B(1,0,0),D(0,2,0),P(0,0,2);$\overrightarrow{DC}$=λ$\overrightarrow{AB}$,可得C(λ,2,0).
(1)$\overrightarrow{PC}$=(λ,2,-2),$\overrightarrow{BD}$=(-1,2,0),向量$\overrightarrow{PC}$与$\overrightarrow{BD}$夹角的余弦值为$\frac{\sqrt{15}}{15}$.
可得$\frac{\sqrt{15}}{15}$=$\frac{-λ+4}{\sqrt{{λ}^{2}+8}•\sqrt{1+4}}$,解得λ=10(舍去)或λ=2.
实数λ的值为2.;
(2)$\overrightarrow{PC}$=(2,2,-2),$\overrightarrow{PD}$=(0,2,-2),平面PCD的法向量$\overrightarrow{n}$=(x,y,z).
则$\overrightarrow{n}•\overrightarrow{PC}=0$且$\overrightarrow{n}•\overrightarrow{PD}=0$,即:x+y-z=0,y-z=0,∴x=0,不妨去y=z=1,
平面PCD的法向量$\overrightarrow{n}$=(0,1,1).又$\overrightarrow{PB}$=(1,0,2).
故cos$<\overrightarrow{n},\overrightarrow{PB}>$=$\frac{\overrightarrow{n}•\overrightarrow{PB}}{|\overrightarrow{n}||\overrightarrow{PB}|}$=$-\frac{\sqrt{10}}{5}$.
直线PB与平面PCD所成角的正弦值为:$\frac{\sqrt{10}}{5}$.

点评 考查建立空间直角坐标系,利用空间向量求异面直线所成角,直线和平面所成角的方法,能求空间点的坐标,向量坐标的数乘运算,向量夹角余弦的坐标公式,理解平面法向量的概念,弄清直线和平面所成角,与直线的方向向量和法向量所成角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知正项数列{an}的前n项和为Sn,且点(an,sn)在抛物线y=λx2上.
(1)求证:数列{an}为单调递增数列;
(2)若λ=1,证明:Sn≥$(\frac{n+1}{2})^{2}$:
(3)是否存在实数λ,使数列{an}为等差数列?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}中,a1=1,a2n+an=n,a2n+1-an=1,则{an}前30项和为131.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
488  932  812  458  989  431  257  390  024  556
734  113  537  569  683  907  966  191  925  271
据此估计,这三天中恰有两天下雨的概率近似为0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正四棱锥P-ABCD的底面一边AB长为$2\sqrt{3}cm$,侧面积为$8\sqrt{3}c{m^2}$,则它的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=2,且$2{a_n}={a_{n-1}}+1({n≥2,n∈{N^+}})$.
(I)求证:数列{an-1}是等比数列,并求出数列{an}的通项公式;
(Ⅱ)设bn=n(an-1),数列{bn}的前n项和为Sn,求证:1≤Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知{an}是公差为1的等差数列,a1,a5,a25成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=2an+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.请阅读下列用For语句写出的算法,说明该算法的处理功能,并画出算法框图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.过点P(1,2)的直线与圆x2+y2=4相切,且与直线ax-y+1=0垂直,则实数a的值为(  )
A.0B.-$\frac{4}{3}$C.$\frac{3}{4}$D.0或$\frac{3}{4}$

查看答案和解析>>

同步练习册答案