精英家教网 > 高中数学 > 题目详情
12.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别为(0,0,0),(0,1,1),(1,0,1),(1,1,0),该四面体的体积为$\frac{1}{3}$.

分析 如图所示,满足条件的四面体为正方体的内接正四面体O-ABC.利用正方体的体积与三棱锥的体积计算公式即可得出.

解答 解:如图所示,
满足条件的四面体为正方体的内接正四面体O-ABC.
∴该四面体的体积V=${1}^{3}-4×\frac{1}{3}×\frac{1}{2}×{1}^{2}×1$
=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了正方体的体积与三棱锥的体积计算公式,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点F且垂直实轴的直线与双曲线的两个交点分别为A、B,如果A、B与双曲线的左焦点构成等边三角形,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知不等式|ax+b|>2的解集为(-∞,2)∪(4,+∞),则a-b=±8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若a、b都为负数,则分别比较$\frac{b}{a}$+$\frac{a}{b}$与2;a+$\frac{1}{a}$与-2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\sqrt{x-1}$-$\sqrt{2-x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x为第二象限角,且tan2x+3tanx-4=0,则$\frac{sinx+cosx}{2sinx-cosx}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正方体的表面积为24,求其外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,ABCD是正方形,DE⊥平面ABCD,AF∥DE,DE=DA=3AF.
(Ⅰ) 求证:AC⊥BE;
(Ⅱ) 求面FBE和面DBE所形成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案