精英家教网 > 高中数学 > 题目详情
7.求函数y=$\sqrt{x-1}$-$\sqrt{2-x}$的最大值.

分析 首先求解出这个函数的定义域,然后根据这个函数的性质可知这个函数在定义域上是增函数,利用增函数的性质求解即可.

解答 解:由题意得x-1≥0,2-x≥0所以1≤x≤2,又因为函数y在[1,2]是增函数,所以函数y的最大值是f(2)=1

点评 本题考查了函数的最值问题,利用函数的单调性求解比较简单.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.根据如图样本数据得到的回归方程为$\widehat{y}$=bx+a,若样本点的中心为(5,0.9).则当x每增加1个单位时,y就(  )
 x 3 4 5 6 7
 y 4.0 a-5.4-0.5 0.5 b-0.6
A.增加1.4个单位B.减少1.4个单位C.增加7.9个单位D.减少7.9个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆上两点A(-5,-2)、B(-2,1),求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若复平面内的点z1、z2对应于复数3+i和4-2i,则线段z1z2的中垂线的复数方程是|z-(3+i)|=|z-(4-2i)|,实数方程是x-3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若在△ABC中,2cosBsinA=sinC,则△ABC的形状一定是(  )
A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别为(0,0,0),(0,1,1),(1,0,1),(1,1,0),该四面体的体积为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos2x+2$\sqrt{3}$sinxcosx.
(1)把函数化成f(x)=Asin(ωx+φ)的形式;
(2)求函数的最小正周期;
(3)求函数的最大值与最小值及取得最大值与最小值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=2,BC=1,AA1=$\sqrt{2}$,E,F分别是C1D1,A1B的中点.
(1)证明:EF⊥A1C;
(2)求三棱锥A1-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆O:x2+y2=b2,若C上存在点M,过点M引圆O的两条切线,切点分别为E,F,使得△MEF为正三角形,则椭圆C的离心率的取值范围是(  )
A.[$\frac{1}{2}$,1)B.[$\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{3}}{2}$,1)D.(1,$\frac{3}{2}$]

查看答案和解析>>

同步练习册答案