【题目】已知圆
,线段
、
都是圆
的弦,且
与
垂直且相交于坐标原点
,如图所示,设△
的面积为
,设△
的面积为
.
![]()
(1)设点
的横坐标为
,用
表示
;
(2)求证:
为定值;
(3)用
、
、
、
表示出
,试研究
是否有最小值,如果有,求出最小值,并写出此时直线
的方程;若没有最小值,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列{an}的前n项和Sn满足S1>1,且
(nN*).
(1)求{an}的通项公式;
(2)设数列
满足
,Tn为数列{bn}的前n项和,求Tn;
(3)设
*(
为正整数),问是否存在正整数
,使得当任意正整数n>N时恒有Cn>2015成立?若存在,请求出正整数
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】教材曾有介绍:圆
上的点
处的切线方程为
。我们将其结论推广:椭圆
上的点
处的切线方程为
,在解本题时可以直接应用。已知,直线
与椭圆
有且只有一个公共点.
![]()
(1)求
的值;
(2)设
为坐标原点,过椭圆
上的两点
、
分别作该椭圆的两条切线
、
,且
与
交于点
。当
变化时,求
面积的最大值;
(3)在(2)的条件下,经过点
作直线
与该椭圆
交于
、
两点,在线段
上存在点
,使
成立,试问:点
是否在直线
上,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,定义椭圆C的“相关圆”E为:
.若抛物线
的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.
(1)求椭圆C及其“相关圆”E的方程;
(2)过“相关圆”E上任意一点P作其切线l,若l 与椭圆
交于A,B两点,求证:
为定值(
为坐标原点);
(3)在(2)的条件下,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且
,
(
).
(1)计算
,
,
,
,并求数列
的通项公式;
(2)若数列
满足
,求证:数列
是等比数列;
(3)由数列
的项组成一个新数列
:
,
,
,
,
,设
为数列
的前
项和,试求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
![]()
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,
为坐标原点.
(1)求椭圆
的方程;
(2)设点
在椭圆
上,点
在直线
上,且
,求证:
为定值;
(3)设点
在椭圆
上运动,
,且点
到直线
的距离为常数
,求动点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于数列
,如果存在常数
,使对任意正整数
,总有
成立,那么我们称数列
为“
﹣摆动数列”.
(1)设
,
,
,判断数列
、
是否为“
﹣摆动数列”,并说明理由;
(2)已知“
﹣摆动数列”
满足:
,
.求常数
的值;
(3)设
,
,且数列
的前
项和为
.求证:数列
是“
﹣摆动数列”,并求出常数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com