精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,已知等差数列{an}中,a3=5,S10=100
(1)求an
(2)设bn=
1
anan+1
,求{bn}的前n项和Tn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)求出公差和首项即可求an
(2)求出bn=
1
anan+1
的通项公式,利用裂项法即可求{bn}的前n项和Tn
解答: 解:(1)由题意知
a1+2d=5
10a1+45d=100
,解得a1=1,d=2,则an=2n-1.
(2)bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
1
2n-1
-
1
2n+1
),
则Tn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)=
1
2
(1-
1
2n+1
)=
n
2n+1
点评:本题主要考查等差数列的通项公式以及数列的前n项和,利用裂项法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
中,a:b=
2
:1
,以原点为圆心,椭圆的长半轴为半径的圆与直线x+y-2=0相切.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于A,B,|AB|=
2
5
3
,设P为椭圆上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l1为函数f(x)=x2(x∈[0,2])在P(t,t2)(t∈(0,2))处的切线,l2为x=2,f(x),l1,l2与x轴所围成的图形如图所示.
(1)请用t表示S1+S2=g(t);
(2)求g(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设n为不小于3的正整数,公差为1的等差数列a1,a2,…,an和首项为1的等比数列b1,b2,…,bn满足b1<a1<b2<a2<…<bn<an,求正整数n的最大值;
(2)对任意给定的不小于3的正整数n,证明:存在正整数x,使得等差数列{an}:xn+xn-1-1,xn+2xn-1-1,…,xn+nxn-1-1和等比数列{bn}:xn,(1+x)xn-1,…,x(1+x)n-1满足b1<a1<b2<a2<…<bn<an

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三位同学玩投篮游戏,他们每次投中的概率分别是0.4,0.6,0.5,他们每人投篮一次,求:
(1)恰有两人投中的概率;
(2)至少有一人投中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点F1(-2,0),右焦点到直线l:x=
a2
a2-b2
的距离为6.
(1)求椭圆C的方程;
(2)若M为直线l上一点,A为椭圆C的左顶点,连结AM交椭圆于点P,求
|PM|
|AP|
的取值范围;
(3)设椭圆C另一个焦点为F2,在椭圆上是否存在一点T,使得
1
|TF1|
1
|F1F2|
1
|TF2|
 成等差数列?若存在,求出点T的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三角形ABC内接于半径为R的圆O.
(1)若在线段AB上任取一点D,求线段AD、DB的长都不小于
1
2
R的概率;
(2)若随机地向圆内丢一粒豆子,假设豆子落在圆内任一点是等可能的,求豆子落入正三角形ABC内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.
(Ⅰ)证明:AC⊥D1E;
(Ⅱ)求DE与平面AD1E所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=4+5cost
y=5+5sint
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

同步练习册答案