¶¨Ò壺¶ÔÓÚº¯Êýf£¨x£©£¬Èô´æÔÚ·ÇÁã³£ÊýM£¬T£¬Ê¹º¯Êýf£¨x£©¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâʵÊýx£¬¶¼ÓÐf£¨x+T£©-f£¨x£©=M£¬Ôò³Æº¯Êýf£¨x£©ÊǹãÒåÖÜÆÚº¯Êý£¬ÆäÖгÆTΪº¯Êýf£¨x£©µÄ¹ãÒåÖÜÆÚ£¬M³ÆÎªÖܾ࣮
£¨1£©Ö¤Ã÷º¯Êýf£¨x£©=x+£¨-1£©x£¨x¡ÊZ£©ÊÇÒÔ2Ϊ¹ãÒåÖÜÆÚµÄ¹ãÒåÖÜÆÚº¯Êý£¬²¢Çó³öËüµÄÏàÓ¦ÖܾàMµÄÖµ£»
£¨2£©ÊÔÇóÒ»¸öº¯Êýy=g£¨x£©£¬Ê¹f£¨x£©=g£¨x£©+Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£©£¨A¡¢¦Ø¡¢¦ÕΪ³£Êý£¬A£¾0£¬¦Ø£¾0£©Îª¹ãÒåÖÜÆÚº¯Êý£¬²¢Çó³öËüµÄÒ»¸ö¹ãÒåÖÜÆÚTºÍÖܾàM£»
£¨3£©É躯Êýy=g£¨x£©ÊÇÖÜÆÚT=2µÄÖÜÆÚº¯Êý£¬µ±º¯Êýf£¨x£©=-2x+g£¨x£©ÔÚ[1£¬3]ÉϵÄÖµÓòΪ[-3£¬3]ʱ£¬Çóf£¨x£©ÔÚ[-9£¬9]ÉϵÄ×î´óÖµºÍ×îСֵ£®
¿¼µã£ºº¯ÊýµÄÖÜÆÚÐÔ
רÌ⣺º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©ÓÉÒÑÖªÌõ¼þÍÆµ¼³öf£¨x+2£©-f£¨x£©¨T2£¬ÓÉ´ËÖ¤Ã÷º¯Êýf£¨x£©=x+£¨-1£©x£¨x¡ÊZ£©ÊǹãÒåÖÜÆÚº¯Êý£¬ËüµÄÖܾàΪ2£®
£¨2£©Éèg£¨x£©=kx+b£¨k¡Ù0£©£¬ÓÉf(x+
2¦Ð
¦Ø
)-f(x)
=
2k¦Ð
¦Ø
£¬ÍƵ¼³öf£¨x£©ÊǹãÒåÖÜÆÚº¯Êý£¬²¢ÄÜÇó³ö²¢Çó³öËüµÄÒ»¸ö¹ãÒåÖÜÆÚTºÍÖܾàM£®
£¨3£©ÓÉf£¨x+2£©-f£¨x£©=-4£¬Öªf£¨x£©ÊǹãÒåÖÜÆÚº¯Êý£¬ÇÒT=2£¬M=-4£¬ÓÉ´ËÄÜÇó³öf£¨x£©ÔÚ[-9£¬9]ÉϵÄ×î´óÖµºÍ×îСֵ£®
½â´ð£º £¨±¾ÌâÂú·Ö£¨16·Ö£©£»µÚ£¨1£©Ð¡Ì⣨4·Ö£©£¬µÚ£¨2£©Ð¡Ì⣨5·Ö£©£¬µÚ£¨3£©Ð¡Ìâ7·Ö£©
£¨1£©Ö¤Ã÷£º¡ßf£¨x£©=x+£¨-1£©x£¨x¡ÊZ£©£¬
¡àf£¨x+2£©-f£¨x£©=[£¨x+2£©+£¨-1£©x+2]-[x+£¨-1£©x]=2£¬£¨·ÇÁã³£Êý£©
¡àº¯Êýf£¨x£©=x+£¨-1£©x£¨x¡ÊZ£©ÊǹãÒåÖÜÆÚº¯Êý£¬
ËüµÄÖܾàΪ2£®£¨4·Ö£©
£¨2£©½â£ºÉèg£¨x£©=kx+b£¨k¡Ù0£©£¬
Ôòf£¨x£©=kx+b+Asin£¨¦Øx+¦Õ£©
¡ßf(x+
2¦Ð
¦Ø
)-f(x)
=k(x+
2¦Ð
¦Ø
)+b+Asin[¦Ø(x+
2¦Ð
¦Ø
)+¦Õ]-[kx+b+Asin(¦Øx+¦Õ)]=
2k¦Ð
¦Ø
£¨·ÇÁã³£Êý£© 
¡àf£¨x£©ÊǹãÒåÖÜÆÚº¯Êý£¬ÇÒT=
2¦Ð
¦Ø
£¬M=
2k¦Ð
¦Ø
£®£¨ 9·Ö£©
£¨3£©½â£º¡ßf£¨x+2£©-f£¨x£©=-2£¨x+2£©+g£¨x+2£©+2x-g£¨x£©=-4£¬
¡àf£¨x£©ÊǹãÒåÖÜÆÚº¯Êý£¬ÇÒT=2£¬M=-4£®£¨10·Ö£©
Éèx1£¬x2¡Ê[1£¬3]Âú×ãf£¨x1£©=-3£¬f£¨x2£©=3£¬
ÓÉf£¨x+2£©=f£¨x£©-4µÃ£º
f£¨x1+6£©=f£¨x1+4£©-4=f£¨x1+2£©-4-4
=f£¨x1£©-4-4-4=-3-12=-15£¬
ÓÖ¡ßf£¨x+2£©=f£¨x£©-4£¼f£¨x£©£¬
¡àf£¨x£©ÔÚÇø¼ä[-9£¬9]ÉϵÄ×îСֵÊÇxÔÚ[7£¬9]ÉÏ»ñµÃµÄ£¬
¶øx1+6¡Ê[7£¬9]£¬¡àf£¨x£©ÔÚ[-9£¬9]ÉϵÄ×îСֵΪ-15£®£¨ 13·Ö£©
ÓÉf£¨x+2£©=f£¨x£©-4£¬
µÃf£¨x-2£©=f£¨x£©+4£¬
¡àf£¨x2-10£©=f£¨x2-8£©+4=f£¨x2-6£©+4+4=¡­=f£¨x2£©+20=23£¬
ÓÖ¡ßf£¨x-2£©=f£¨x£©+4£¾f£¨x£©£¬
¡àf£¨x£©ÔÚÇø¼ä[-9£¬9]ÉϵÄ×î´óÖµÊÇxÔÚ[-9£¬-7]ÉÏ»ñµÃµÄ£¬
¶øx2-10¡Ê[-9£¬-7]£¬f£¨x£©ÔÚ[-9£¬9]ÉϵÄ×î´óֵΪ23£®£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²é¹ãÒåÖÜÆÚº¯ÊýµÄÖ¤Ã÷£¬¿¼²é¹ãÒåÖÜÆÚº¯ÊýµÄÇ󷨣¬¿¼²éº¯ÊýµÄ×î´óÖµµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ¼Ûת»¯Ë¼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÃüÌâP£º×ÔÈ»Êýa£¬b£¬cÖÐÇ¡ÓÐÒ»¸öżÊý£¬ÔòÆä·ñ¶¨?PΪ£¨¡¡¡¡£©
A¡¢a£¬b£¬c¶¼ÊÇÆæÊý
B¡¢a£¬b£¬c¶¼ÊÇżÊý
C¡¢a£¬b£¬cÖÐÖÁÉÙÓÐÁ½¸öżÊý
D¡¢a£¬b£¬cÖÐÖÁÉÙÓÐÁ½¸öżÊý»ò¶¼ÊÇÆæÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx£¬y£¬z¡ÊR+£¬x+y+z=3£®
£¨1£©Çó
1
x
+
1
y
+
1
z
µÄ×îСֵ
£¨2£©Ö¤Ã÷£º3¡Üx2+y2+z2£¼9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

д³öСÓÚ10µÄÕýżÊý¼¯ºÏAµÄËùÓÐÕæ×Ó¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬Å×ÎïÏßCÓëÖ±ÏßL1£ºy=-xµÄÒ»¸ö½»µãµÄºá×ø±êΪ4£®
£¨¢ñ£©ÇóÅ×ÎïÏßCµÄ·½³Ì£®
£¨¢ò£©¹ýµãFÈÎ×÷Ö±ÏßLÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÓɵãA£¬B·Ö±ðÏò£¨x-1£©2+y2=
1
4
¸÷ÒýÒ»ÌõÇÐÏߣ¬Çеã·Ö±ðΪP£¬Q£¬¼Ç¦Á=¡ÏAFP£¬¦Â=¡ÏBFQ£¬ÇóÖ¤£ºcos¦Á+cos¦ÂΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè{an}ÊǵȲîÊýÁУ¬{bn}ÊǸ÷ÏΪÕýÊýµÄµÈ±ÈÊýÁУ¬ÇÒa1=2£¬b1=3£¬a3+b5=56£¬a5+b3=26£®
£¨¢ñ£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨¢ò£©Èô-x2+3x¡Ü
2bn
2n+1
¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÀëÐÄÂÊΪ
1
2
µÄÍÖÔ²¦¸£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©Éϵĵ㵽Æä×ó½¹µãµÄ¾àÀëµÄ×î´óֵΪ3£¬¹ýÍÖÔ²¦¸ÄÚÒ»µãPµÄÁ½ÌõÖ±Ïß·Ö±ðÓëÍÖÔ²½»ÓÚµãA¡¢CºÍB¡¢D£¬ÇÒÂú×ã
AP
=¦Ë
PC
£¬
BP
=¦Ë
PD
£¬ÆäÖЦËΪ³£Êý£¬¹ýµãP×÷ABµÄƽÐÐÏß½»ÍÖÔ²ÓÚM¡¢NÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²¦¸µÄ·½³Ì£»
£¨¢ò£©ÈôµãP£¨1£¬1£©£¬ÇóÖ±ÏßMNµÄ·½³Ì£¬²¢Ö¤Ã÷µãPƽ·ÖÏß¶ÎMN£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA={x|
1
3
£¼3x£¼9}£¬B={x|log2x£¾0}£®
£¨¢ñ£©ÇóA¡ÉBºÍA¡ÈB£»
£¨¢ò£©¶¨ÒåA-B={x|x¡ÊAÇÒx∉B}£¬ÇóA-BºÍB-A£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô¹ØÓÚxµÄ·½³Ìsin2x+cos2x=kÔÚÇø¼ä[0£¬
¦Ð
2
]ÉÏÓÐÁ½¸ö²»Í¬µÄʵÊý½â£¬ÔòkµÄȡֵ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸