精英家教网 > 高中数学 > 题目详情
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=2,b1=3,a3+b5=56,a5+b3=26.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若-x2+3x≤
2bn
2n+1
对任意n∈N*恒成立,求实数x的取值范围.
考点:等差数列与等比数列的综合
专题:综合题,等差数列与等比数列
分析:(Ⅰ)利用a1=2,b1=3,a3+b5=56,a5+b3=26,建立方程组,求出q,d,即可求数列{an},{bn}的通项公式;
(Ⅱ)-x2+3x≤
2bn
2n+1
对任意n∈N*恒成立,只需求出右边的最小值,即可求实数x的取值范围.
解答: 解:(Ⅰ)由题意,
a1+2d+b1q4=56
a1+4d+b1q2=26
,(2分)
代入得
2+2d+3•q4=56
2+4d+3•q2=26
,消d得2q4-q2-28=0,
∴(2q2+7)(q2-4)=0,
∵{bn}是各项都为正数的等比数列,
∴q=2
进而d=3,
an=3n-1,bn=3•2n-1(6分)
(Ⅱ)记cn=
3•2n-1
2n+1
,则cn+1-cn=3•2n-1
2n-1
(2n+1)(2n+3)
>0
(10分)
∴cn最小值为c1=1,(12分)
-x2+3x≤
2bn
2n+1
对任意n∈N*恒成立,
∴-x2+3x≤2,
∴x≥2,或x≤1(14分)
点评:本题考查等差数列与等比数列的综合,考查数列的通项,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个几何体的正视图是直径为2的圆,侧视图、俯视图都是边长为2的正方形,则该几何体的体积为(  )
A、2πB、4πC、6πD、8π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2x,1),
b
=(1,sin2x),x∈R,函数f(x)=
a
b

(1)求函数f(x)的最小正周期:
(2)若f(
a
2
+
π
8
)=
3
2
5
,求cos2a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(x1,y1)、B(x2,y2)是圆C1:(x-1)2+y2=4上的两个动点,O是坐标原点,且满足OA⊥OB,以线段AB为直径作圆C2
(1)若点A的坐标为(3,0),求点B坐标;
(2)求圆心C2的轨迹方程;
(3)求圆C2的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,其中称T为函数f(x)的广义周期,M称为周距.
(1)证明函数f(x)=x+(-1)x(x∈Z)是以2为广义周期的广义周期函数,并求出它的相应周距M的值;
(2)试求一个函数y=g(x),使f(x)=g(x)+Asin(ωx+φ)(x∈R)(A、ω、φ为常数,A>0,ω>0)为广义周期函数,并求出它的一个广义周期T和周距M;
(3)设函数y=g(x)是周期T=2的周期函数,当函数f(x)=-2x+g(x)在[1,3]上的值域为[-3,3]时,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“存在x∈R,2x2+(m-1)x+
1
2
≤0
”,命题q:“曲线C1
x2
m2
+
y2
2m+8
=1
表示焦点在x轴上的椭圆”,命题s:“曲线C2
x2
m-t
+
y2
m-t-1
=1
表示双曲线”
(1)若“p且q”是真命题,求m的取值范围;
(2)若q是s的必要不充分条件,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC为等腰直角三角形,AB=BC=1,动点P从点A开始,沿A→B→C→A运动.
(1)求PA的长y与点P所走路程x的函数关系式y=f(x);
(2)若f(a)=1,求a的值;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sin2x+2,cosx),
n
=(1,2cosx),设函数f(x)=
m
n
-3.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=1,a=
3
且b+c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-2x-3<0},B={x|x<a},若A?B,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案