精英家教网 > 高中数学 > 题目详情
已知x,y,z∈R+,x+y+z=3.
(1)求
1
x
+
1
y
+
1
z
的最小值
(2)证明:3≤x2+y2+z2<9.
考点:基本不等式
专题:不等式的解法及应用
分析:(1)利用“乘1法”和基本不等式即可得出;
(2)利用3(x2+y2+z2)≥(x+y+z)2;及作差x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+xz)即可证明.
解答: (1)解:∵x,y,z∈R+,x+y+z=3.
1
x
+
1
y
+
1
z
=
1
3
(x+y+z)(
1
x
+
1
y
+
1
z
)

=
1
3
(3+
y
x
+
x
z
+
y
x
+
y
z
+
z
x
+
z
y
)
1
3
(3+2
y
x
x
y
+2
x
z
z
x
+2
y
z
z
y
)
=3,
当且仅当x=y=z=1时取等号,
1
x
+
1
y
+
1
z
的最小值是3.
(2)证明:∵(x-y)2+(x-z)2+(y-z)2≥0,
∴2(x2+y2+z2)≥2xy+2xz+2yz,
∴3(x2+y2+z2)≥(x+y+z)2=32
∴x2+y2+z2≥3;
又x2+y2+z2-9=x2+y2+z2-(x+y+z)2=-2(xy+yz+xz)<0.
综上可得:3≤x2+y2+z2<9.
点评:本题考查了“乘1法”和基本不等式的性质、“作差法”比较两个数的大小等基础知识与基本技能方法,考查了转化为能力和推理能力、计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x∈R,2x2-x+1<0”的否定是(  )
A、?x∈R,2x2-x+1≥0
B、?x∈R,2x2-x+1≥0
C、?x∈R,2x2-x+1≤0
D、?x∈R,2x2-x+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x;若n∈N*,an=f(n),则a2014等于(  )
A、2009
B、-2009
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:y2=2px(p>0)的准线与x轴交于点M,过点M作圆C:(x-2)2+y2=1的两条切线,切点为A,B,|AB|=
4
2
3

(Ⅰ)求抛物线E的方程;
(Ⅱ)过抛物线E上的点N作圆C的两条切线,切点分别为P,Q,若P,Q,O(O为原点)三点共线,求点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点(
3
1
2
),离心率e=
3
2

(Ⅰ)求椭圆的方程:
(Ⅱ)若直线y=kx+2与椭圆有两个交点,求出k的取值范围;
(Ⅲ)经过椭圆左顶点A的直线交椭圆丁另一点B,线段AB的垂直平分线上的一P满足
PA
PB
=4,若P点在y轴上,求出P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2x,1),
b
=(1,sin2x),x∈R,函数f(x)=
a
b

(1)求函数f(x)的最小正周期:
(2)若f(
a
2
+
π
8
)=
3
2
5
,求cos2a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的表面积为10π,当圆锥的底面半径为何值时,圆锥体积最大?并求出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,其中称T为函数f(x)的广义周期,M称为周距.
(1)证明函数f(x)=x+(-1)x(x∈Z)是以2为广义周期的广义周期函数,并求出它的相应周距M的值;
(2)试求一个函数y=g(x),使f(x)=g(x)+Asin(ωx+φ)(x∈R)(A、ω、φ为常数,A>0,ω>0)为广义周期函数,并求出它的一个广义周期T和周距M;
(3)设函数y=g(x)是周期T=2的周期函数,当函数f(x)=-2x+g(x)在[1,3]上的值域为[-3,3]时,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={x|y=|x|},N={y|y=|x|},则M与N的关系为
 

查看答案和解析>>

同步练习册答案