精英家教网 > 高中数学 > 题目详情
写出小于10的正偶数集合A的所有真子集.
考点:子集与真子集
专题:阅读型
分析:根据小于10的正偶数有2,4,6,8.写出集合A,再利用树图法写出A的所有子集.
解答: 解:小于10的正偶数有2,4,6,8.
∴A={2,4,6,8},
∴集合A的子集有:{2,4,6,8},{2,4,6},{2,4,8},{2,6,8},{4,6,8},{2,4},{2,6},{2,8},
{4,6},{4,8},{6,8},{2},{4},{6},{8},∅共16个.
点评:本题考查了集合的子集概念,树图法是写出集合的所有子集的常用方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,两个焦点F1,F2分别为(
5
,0)和(-
5
,0),点P在双曲线上且PF1⊥PF2,且△PF1F2的面积为1,则双曲线的方程为(  )
A、
x2
2
-
y2
3
=1
B、
x2
3
-
y2
2
=1
C、
x2
4
-y2=1
D、x2-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:y2=2px(p>0)的准线与x轴交于点M,过点M作圆C:(x-2)2+y2=1的两条切线,切点为A,B,|AB|=
4
2
3

(Ⅰ)求抛物线E的方程;
(Ⅱ)过抛物线E上的点N作圆C的两条切线,切点分别为P,Q,若P,Q,O(O为原点)三点共线,求点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos2x,1),
b
=(1,sin2x),x∈R,函数f(x)=
a
b

(1)求函数f(x)的最小正周期:
(2)若f(
a
2
+
π
8
)=
3
2
5
,求cos2a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的表面积为10π,当圆锥的底面半径为何值时,圆锥体积最大?并求出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(x1,y1)、B(x2,y2)是圆C1:(x-1)2+y2=4上的两个动点,O是坐标原点,且满足OA⊥OB,以线段AB为直径作圆C2
(1)若点A的坐标为(3,0),求点B坐标;
(2)求圆心C2的轨迹方程;
(3)求圆C2的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:对于函数f(x),若存在非零常数M,T,使函数f(x)对于定义域内的任意实数x,都有f(x+T)-f(x)=M,则称函数f(x)是广义周期函数,其中称T为函数f(x)的广义周期,M称为周距.
(1)证明函数f(x)=x+(-1)x(x∈Z)是以2为广义周期的广义周期函数,并求出它的相应周距M的值;
(2)试求一个函数y=g(x),使f(x)=g(x)+Asin(ωx+φ)(x∈R)(A、ω、φ为常数,A>0,ω>0)为广义周期函数,并求出它的一个广义周期T和周距M;
(3)设函数y=g(x)是周期T=2的周期函数,当函数f(x)=-2x+g(x)在[1,3]上的值域为[-3,3]时,求f(x)在[-9,9]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC为等腰直角三角形,AB=BC=1,动点P从点A开始,沿A→B→C→A运动.
(1)求PA的长y与点P所走路程x的函数关系式y=f(x);
(2)若f(a)=1,求a的值;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列三个结论,其中不正确结论的序号是
 

①若命题p:?x∈R,x2-x+1<0,则?p:?x∈R,x2-x+1>0;
②“在△ABC中,若sinA>sinB,则A>B”的逆命题是真命题;
③正项数列{an}中,a1=4,Sn-an+1=n,则an=3•2n-1+1(n∈N*

查看答案和解析>>

同步练习册答案