精英家教网 > 高中数学 > 题目详情
9.圆C:x2+y2+2x+2y-2=0,l:x-y+2=0,求圆心到直线l的距离$\sqrt{2}$.

分析 配方可得圆心,利用点到直线的距离公式即可得出.

解答 解:圆C:x2+y2+2x+2y-2=0,配方为:(x+1)2+(y+1)2=4,可得圆心C(-1,-1).
∴圆心到直线l的距离d=$\frac{|-1+1+2|}{\sqrt{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了点圆的标准方程、到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知f(x-1)=x2-2x+1,则f(x)=x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面上一点M(5,0),若直线上存在点P使|PM|≤4,则称该直线为“切割型直线”,下列直线中是“切割型直线”的是(  )
①y=x+1;②y=2;③y=$\frac{4}{3}$x;④y=2x+1.
A.①③B.①②C.②③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二项式(a-$\frac{1}{2a}$)9展开式中,a3项的系数为(  )
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{21}{2}$D.$\frac{21}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.由y=2cos2x的图象向右平移a个单位长度可以得到函数f(x)=2sin(3x+$\frac{π}{3}$)的图象,则a的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14..在△ABC中,角A,B,C所对的边分别为a,b,c,且满足tanC=$\sqrt{3}$.
(1)求角C的大小.
(2)已知b=4,△ABC的面积为6$\sqrt{3}$,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=x2-2$\sqrt{a}$x+b.
(1)若系数a,b都可随机取集合{0,1,2}中任何一数字,求方程f(x)=0有实根的概率;
(2)若系数a,b都可随机取区间[0,3]中任何一实数,求方程f(x)=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线y=kx-k+1恒过定点A,若点A在直线mx+ny-1=0(mn>0)上,则$\frac{1}{m}+\frac{1}{n}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,底面ABCD是梯形,AD∥BC,∠DAB=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(1)求证:BC⊥平面PAB.
(2)在侧棱PA上是否存在一点E,使得平面CDE与平面ADC所成角的余弦值是$\frac{2}{3}$?若存在,求出AE的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案