精英家教网 > 高中数学 > 题目详情
在边长为的正方形铁皮的四切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?
当箱底边长为时,箱子容积最大,最大容积是.

试题分析:设箱底边长为,则无盖的方底箱子的高,其体积为,从而可得,通过求导,讨论导数的正负得函数的增减性,根据函数的单调性可求体积的最大值.
试题解析:设箱底边长为,则无盖的方底箱子的高,其体积为
 
,得,解得(舍去)
时,;当时,
所以时,单调递增;时,单调递减,所以函数时取得极大值, 结合实际情况,这个极大值就是函数的最大值.
故当箱底边长为时,箱子容积最大,最大容积是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,(其中常数
(1)当时,求曲线在处的切线方程;
(2)若存在实数使得不等式成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)当时,求函数的图象在点处的切线方程;
(2)如果对于任意,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,记.
(1)求曲线处的切线方程;
(2)求函数的单调区间;
(3)当时,若函数没有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若曲线在点处的切线与直线垂直,求的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)设,当时,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线yf(x)在点(1,f(1))处的切线方程是( )
A.y=2x-1 B.y=xC.y=3x-2D.y=-2x+3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果f(x)=ax3+bx2+c(a>0)的导函数图象的顶点坐标为(1,- ),那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案