精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=a{x^2}-2ax+a+\frac{1}{3}$(a>0),$g(x)=b{x^3}-2b{x^2}+bx-\frac{4}{27}$(b>1),则函数y=g(f(x))的零点个数为4.

分析 先求出函数y=g(f(x))的导数,由y′=0,得到函数y=g(f(x))有三个极值点,从而能求出函数y=g(f(x))的零点个数.

解答 解:∵$f(x)=a{x^2}-2ax+a+\frac{1}{3}$(a>0),$g(x)=b{x^3}-2b{x^2}+bx-\frac{4}{27}$(b>1),
∴y=g(f(x))=b($a{x}^{2}-2ax+a+\frac{1}{3}$)3-2b($a{x}^{2}-2ax+a+\frac{1}{3}$)2+b($a{x}^{2}-2ax+a+\frac{1}{3}$)-$\frac{4}{27}$,
∴y′=3b(ax2-2ax+a+$\frac{1}{3}$)2(2ax-2a)-4b($a{x}^{2}-2ax+a+\frac{1}{3}$)(2ax-2a)+b(2ax-2a),
由y′=0,得x1=1,x2=1-$\frac{\sqrt{6a}}{3a}$,${x}_{3}=1+\frac{\sqrt{6a}}{3a}$,
∴函数y=g(f(x))的零点个数为4个.
故答案为:4.

点评 本题考查函数的零点个数的判断,是基础题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设z=1+i(i是虚数单位),则$\frac{2}{z}$-$\overline{z}$=(  )
A.iB.2-iC.1-iD.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2
(1)求(2$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{a}$;
(2)求:|2$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\frac{x}{{{x^2}+1}}$,关于f(x)的性质,有以下四个推断:
①f(x)的定义域是(-∞,+∞);       ②f(x)的值域是$[-\frac{1}{2},\;\frac{1}{2}]$;
③f(x)是奇函数;                   ④f(x)是区间(0,2)上的增函数.
其中推断正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,D为AB的一个三等分点,AB=3AD,AC=AD,CB=3CD,则cosB=$\frac{7\sqrt{6}}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从集合A={2,3,-4}中随机选取一个数记为k,则函数y=kx为单调递增的概率为(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某商品销量q与售价p满足q=10-λp,总成本c与销量满足c=4+μq,销售收入r与售价及销量之间满足r=pq,其中λ,μ均为正常数,设利润=销售收入-总成本,则利润最大时的售价为(  )
A.$\frac{10-λμ}{λ}$B.$\frac{10+λμ}{λ}$C.$\frac{10-λμ}{2λ}$D.$\frac{10+λμ}{2λ}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设Sn是等比数列{an}的前n项和,a1=1,且3,2+2a2,S3成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=log3an+1,求$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2、a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=anlog2an,Sn=b1+b2+…+bn,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案