精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)=\frac{x}{{{x^2}+1}}$,关于f(x)的性质,有以下四个推断:
①f(x)的定义域是(-∞,+∞);       ②f(x)的值域是$[-\frac{1}{2},\;\frac{1}{2}]$;
③f(x)是奇函数;                   ④f(x)是区间(0,2)上的增函数.
其中推断正确的个数是(  )
A.1B.2C.3D.4

分析 根据f(x)的表达式求出其定义域,判断①正确;根据基本不等式的性质求出f(x)的值域,判断②正确;根据奇偶性的定义,判断③正确;根据函数的单调性,判断④错误.

解答 解:①∵函数$f(x)=\frac{x}{{{x^2}+1}}$,
∴f(x)的定义域是(-∞,+∞),
故①正确;       
②f(x)=$\frac{1}{x+\frac{1}{x}}$,
x>0时:f(x)≤$\frac{1}{2}$,
x<0时:f(x)≥-$\frac{1}{2}$,
故f(x)的值域是$[-\frac{1}{2},\;\frac{1}{2}]$,
故②正确;
③f(-x)=-f(x),f(x)是奇函数,
故③正确;
④由f′(x)=$\frac{1{-x}^{2}}{{{(x}^{2}+1)}^{2}}$,
令f′(x)>0,解得:-1<x<1,
令f′(x)<0,解得:x>1或x<-1,
∴f(x)在区间(0,2)上先增后减,
故④错误;
故选:C.

点评 本题考察了函数的定义域、值域问题,考察函数的奇偶性和单调性,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.${∫}_{1}^{e}$$\frac{1+lnx}{x}$dx=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,AB=2BC,则cosA的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点M(x,y)满足$\left\{\begin{array}{l}{x≥1}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,当a>0,b>0时,若ax+by的最大值为12,则$\frac{4}{a}$+$\frac{3}{b}$的最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$cosα=\frac{1}{2}$,那么cos(-2α)等于(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知cos(α-π)=$\frac{1}{2}$,-π<α<0,则tanα=(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.-$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=a{x^2}-2ax+a+\frac{1}{3}$(a>0),$g(x)=b{x^3}-2b{x^2}+bx-\frac{4}{27}$(b>1),则函数y=g(f(x))的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-$\frac{1}{2}$x+c(a,c∈R)满足条件f(1)=0,且对任意实数x都有f(x)≥0.
(1)求a、c的值:
(2)是否存在实数m,使函数g(x)=4f(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.矩形ABCD中,AB=2$\sqrt{3}$,AD=2,点E为线段BC的中点,点F为线段CD上的动点,则$\overrightarrow{AE}$$•\overrightarrow{AF}$的取值范围是(  )
A.[2,14]B.[0,12]C.[0,6]D.[2,8]

查看答案和解析>>

同步练习册答案