分析 作出不等式组对应的平面区域,利用投影的定义,利用数形结合进行求解即可.
解答
解:作出不等式组$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$对应的平面区域如图:(阴影部分),
区域内的点在直线x+y-2=0上的投影构成线段A′B′,
由$\left\{\begin{array}{l}{x+2y=0}\\{x-2y+2=0}\end{array}\right.$得A(-1,$\frac{1}{2}$)
由$\left\{\begin{array}{l}{x+y=0}\\{x-2y+2=0}\end{array}\right.$得B(2,-2),
则|AB|=|2+1|=3,
故答案为:3.
点评 本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用投影的定义以及数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{7}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$或$\frac{2π}{3}$ | B. | $\frac{π}{6}$或$\frac{5π}{6}$ | C. | $\frac{π}{4}$或$\frac{3π}{4}$ | D. | $\frac{π}{3}$或$\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{7π}{12}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z | B. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z | ||
| C. | [kπ-$\frac{π}{12}$,kπ+$\frac{π}{12}$],k∈Z | D. | [kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com