精英家教网 > 高中数学 > 题目详情

记定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上“中值点”的个数为________.

 

2

【解析】设函数f(x)的“中值点”为x0,则f′(x0)==1,即3x02-3=1,解得x0=±=±∈[-2,2],故函数y=x3-3x在区间[-2,2]上“中值点”的个数是2.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-3函数的奇偶性与周期性(解析版) 题型:填空题

y=f(x)是定义在R上的偶函数且在[0,+∞)上递增,不等式f()<f(-)的解集为________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-12导数的应用二(解析版) 题型:解答题

已知函数f(x)=ax2-(a+2)x+lnx.

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:解答题

设f(x)=ln(1+x)-x-ax2.

(1)当x=1时,f(x)取到极值,求a的值;

(2)当a满足什么条件时,f(x)在区间[-,-]上有单调递增区间?

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-11导数的应用一(解析版) 题型:选择题

设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是(  )

A.函数f(x)有极大值f(2)和极小值f(1)

B.函数f(x)有极大值f(-2)和极小值f(1)

C.函数f(x)有极大值f(2)和极小值f(-2)

D.函数f(x)有极大值f(-2)和极小值f(2)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:填空题

已知函数f(x)=x-sinx-cosx的图象在点A(x0,y0)处的切线斜率为1,则tanx0=________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:2-10导数的概念及运算(解析版) 题型:选择题

函数y=-x2+1(0<x<2)的图象上任意点处切线的倾斜角记为α,则α的最小值是(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-7离散型随机变量及分布列(解析版) 题型:填空题

某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=________.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:10-5古典概型(解析版) 题型:选择题

从2,4,6中选两个数字,从1,3,5中选两个数字,组成无重复数字的四位数,该四位数为偶数的概率为(  )

A. B. C. D.

 

查看答案和解析>>

同步练习册答案