精英家教网 > 高中数学 > 题目详情
20.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点、上顶点、右焦点分别为A、B、F,且∠ABF=90°,则$\frac{b}{a}$的值为(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{5}+1}}{4}$C.$\frac{{\sqrt{2}+\sqrt{3}}}{4}$D.$\sqrt{\frac{{\sqrt{5}-1}}{2}}$

分析 利用椭圆的性质用a,b,c表示出△ABF的边长,利用勾股定理列方程得出a,b,c的关系.

解答 解:由椭圆的定义可知|AF|=a+c,|AB|=$\sqrt{{a}^{2}+{b}^{2}}$,|BF|=a
∵∠ABF=90°,
∴|AB|2+|BF|2=|AF|2,即a2+b2+a2=a2+c2+2ac,
∴a2+b2=c2+2ac.又b2=a2-c2
∴a2-c2-ac=0,即($\frac{c}{a}$)2+$\frac{c}{a}$-1=0,
∴$\frac{c}{a}$=$\frac{\sqrt{5}-1}{2}$,
∴$\frac{b}{a}$=$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{6-2\sqrt{5}}{4}}$=$\sqrt{\frac{\sqrt{5}-1}{2}}$.
故选:D.

点评 本题考查了椭圆的简单性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.根据经验知道,若每台机器产生的次品数P(万件)与每台机器的日产量x(万件)(4≤x≤12)之间满足关系:P=0.1x2-3.2lnx+3,已知每生产1万件合格的元件可以盈利2万元,但每产生1万件装次品将亏损1万元.(利润=盈利-亏损)
(I)试将该工厂每天生产这种元件所获得的利润y(万元)表示为x的函数;
(II)当每台机器的日产量x(万件)写为多少时所获得的利润最大,最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A={1,x,y},B={1,x2,2y},若A=B,则实数x的取值集合为(  )
A.{$\frac{1}{2}$}B.{$\frac{1}{2}$,-$\frac{1}{2}$}C.{0,$\frac{1}{2}$}D.{0,$\frac{1}{2}$,-$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是(  )(如表是随机数表第7行至第9行)
A.105B.507C.071D.717

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设a,b,c是△ABC的三边长.求证:a2-b2-c2-2bc<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C的圆心在直线x+y-2=0上,圆C经过点(2,-2)且被x轴截得的弦长为2,则圆C的标准方程为(x-3)2+(y+1)2=2或(x-5)2+(y+3)2=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.AB是平面α的一条斜线段,B为斜足,AA′⊥α,A′是垂足,BC?α,若∠ABC=60°,∠A′BC=45°,则直线AB与平面α所成的角是45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用数字l,2,3,4,5,6组成的没有重复数字的六位数,其中个位数字小于十位数字的六位数的个数是360.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若△ABC的顶点为A(3,6),B(-1,5),C(1,1),则BC边上的中线AD的长为3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案