精英家教网 > 高中数学 > 题目详情
8.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是(  )(如表是随机数表第7行至第9行)
A.105B.507C.071D.717

分析 根据随机数表法进行求解即可.

解答 解:从随机数表第8行第7列的数开始按三位数连续向右读编号依次为
785 916 955 567 199 810 507 175,
数字中小于800的为785  567 199  507 175,
则第4个数为507
故选:B

点评 本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图,在△ABC中,∠B=$\frac{π}{3}$,AB=8,点D在边BC上,cos∠ADC=$\frac{1}{7}$,则sin∠BAD=$\frac{3\sqrt{3}}{14}$,BD=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a、b、c分别是角A、B、C的对边,已知a2cosAsinB=b2sinAcosB,则△ABC为(  )
A.等腰三角形B.等腰直角三角形
C.直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.小明在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个,甲、乙、丙每人每次抢到红包的概率均为$\frac{1}{3}$.
(1)若小明发放1元的红包2个,求甲最多抢到1个红包的概率;
(2)若小明共发放3个红包,第一次发放5元,第二次发放5元,第三次发放10元,记甲抢到红包的总金额为ζ元,求ζ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)设x≥1,y≥1,证明x+y+$\frac{1}{xy}$≤$\frac{1}{x}$+$\frac{1}{y}$+xy;
(2)设1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x>0,y>0,且x2+$\frac{4}{y}$=1,则$\frac{{x}^{2}}{y}$的最大值为$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点、上顶点、右焦点分别为A、B、F,且∠ABF=90°,则$\frac{b}{a}$的值为(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{5}+1}}{4}$C.$\frac{{\sqrt{2}+\sqrt{3}}}{4}$D.$\sqrt{\frac{{\sqrt{5}-1}}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(lnx)=ex,则f(-1)=${e}^{\frac{1}{e}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={1,sinθ},B={$\frac{1}{2}$,2},则“θ=$\frac{5π}{6}$”是“A∩B={${\frac{1}{2}}$}”的(  )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案