精英家教网 > 高中数学 > 题目详情
13.若x>0,y>0,且x2+$\frac{4}{y}$=1,则$\frac{{x}^{2}}{y}$的最大值为$\frac{1}{16}$.

分析 利用基本不等式的性质即可得出.

解答 解:∵x>0,y>0,且x2+$\frac{4}{y}$=1,
∴1$≥2\sqrt{{x}^{2}•\frac{4}{y}}$,化为:$\frac{{x}^{2}}{y}$≤$\frac{1}{16}$,当且仅当x=$\frac{\sqrt{2}}{2}$,y=8时取等号.
则$\frac{{x}^{2}}{y}$的最大值为$\frac{1}{16}$.
故答案为:$\frac{1}{16}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.△ABC三边上的高依次为2、3、4,则△ABC为(  )
A.锐角三角形B.钝角三角形
C.直角三角形D.不存在这样的三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某观测站C在城A的南偏西20?的方向上,由A城出发有一条公路,走向是南偏东40?,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,则此人还需走15千米到达A城.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义在(0,+∞)上函数f(x)满足2f(x)-f($\frac{1}{x}$)=$\frac{3}{{x}^{2}}$,则f(x)的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是(  )(如表是随机数表第7行至第9行)
A.105B.507C.071D.717

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\left\{\begin{array}{l}x≤4\\ x-y+4≥0\\{(x+y-2)^2}≤4\end{array}\right.$,则z=x-2y的取值范围是(  )
A.[-8,12]B.[-4,12]C.[-4,4]D.[-8,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知圆C的圆心在直线x+y-2=0上,圆C经过点(2,-2)且被x轴截得的弦长为2,则圆C的标准方程为(x-3)2+(y+1)2=2或(x-5)2+(y+3)2=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若logm9<logn9<0,那么m,n满足的条件是0<n<m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=7+ax-1的图象恒过点P,则P点的坐标是(1,8).

查看答案和解析>>

同步练习册答案