精英家教网 > 高中数学 > 题目详情
14.近日石家庄狮身人面像拆除,围绕此事件的种种纷争,某媒体通过随机询问100名性别不同的居民对此的看法,得到表
认为就应依法拆除认为太可惜了
4510
3015
附:
P(K2≥k)0.100.050.025
k2.7063.8415.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过1%的前提下,认为“认为拆除太可惜了与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“认为拆除太可惜了与性别无关”
C.有90%以上的把握认为“认为拆除太可惜了与性别有关”
D.有90%以上的把握认为“认为拆除太可惜了与性别无关”

分析 通过图表读取数据,代入观测值公式计算,然后参照临界值表即可得到正确结论.

解答 解:由2×2列联表得到a=45,b=10,c=30,d=15;
则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100;
计算观测值K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{100{×(675-300)}^{2}}{55×45×75×25}$≈3.30,
因为2.706<3.030<3.841,
所以有90%以上的把握认为“认为拆除太可惜了与性别有关”.
故选:C.

点评 本题考查了独立性检验的应用问题,利用临界值的大小来决定是否拒绝原来的统计假设,若值较大就拒绝假设,即拒绝两个事件无关,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.正三棱柱ABC-A′B′C′的A′A=AB=2,则点A到BC′的距离为$\frac{{\sqrt{14}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lnx+ln(2-x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值为2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若抛物线C:x=2py2(p>0)过点(2,5),则准线的方程为x=-$\frac{25}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.观察下列各图,并阅读下面的文字,像这样,2、3、4条直线相交,交点的个数最多分别为1、3、6个,其通项公式an=$\frac{1}{2}$n(n-1).(an为n条直线的交点的最多个数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(x)=x2+2(a-1)x+4是区间(-∞,4]上的减函数,则实数a的取值范围是a≤-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=alnx+$\frac{1}{bx}$(a,b∈R)在点(1,f(1))处的切线方程为x-2y=0.
(1)求a,b的值;
(2)当x>1时,f(x)-kx<0恒成立,求实数k的取值范围;
(3)证明:当n∈N*,且n≥2时,$\frac{1}{2ln2}$+$\frac{1}{3ln3}$+$\frac{1}{4ln4}$+…+$\frac{1}{nlnn}$>$\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知A,B是椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,M是E上不同于A,B的任意一点,若直线AM,BM的斜率之积为-$\frac{4}{9}$,则E的离心率为(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则$\sum_{i=1}^{10}{a}_{i}$的值为31.

查看答案和解析>>

同步练习册答案