精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=alnx+$\frac{1}{bx}$(a,b∈R)在点(1,f(1))处的切线方程为x-2y=0.
(1)求a,b的值;
(2)当x>1时,f(x)-kx<0恒成立,求实数k的取值范围;
(3)证明:当n∈N*,且n≥2时,$\frac{1}{2ln2}$+$\frac{1}{3ln3}$+$\frac{1}{4ln4}$+…+$\frac{1}{nlnn}$>$\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

分析 (1)f′(x)=$\frac{a}{x}$-$\frac{1}{b{x}^{2}}$=$\frac{abx-1}{b{x}^{2}}$,f′(1)=a-$\frac{1}{b}$,f(1)=$\frac{1}{b}$.由函数f(x)在点(1,f(1))处的切线方程为x-2y=0.
可得a-$\frac{1}{b}$=$\frac{1}{2}$,1-2×$\frac{1}{b}$=0,解得a,b.
(2)f(x)=lnx+$\frac{1}{2x}$.当x>1时,f(x)-kx<0恒成立,lnx+$\frac{1}{2x}$-kx<0,化为:k$>\frac{lnx}{x}$+$\frac{1}{2{x}^{2}}$=g(x).利用导数研究函数g(x)的单调性极值与最值即可得出.
(3)由(2)可知:x>1时,$\frac{lnx}{x}$+$\frac{1}{2{x}^{2}}$<$\frac{1}{2}$,化为$\frac{1}{xlnx}>\frac{2}{{x}^{2}-1}$,令x=n≥2,则$\frac{1}{nlnn}$>$\frac{2}{{n}^{2}-1}$=$\frac{1}{n-1}-\frac{1}{n+1}$.利用“累加求和”方法与“裂项求和”方法即可得出.

解答 (1)解:f′(x)=$\frac{a}{x}$-$\frac{1}{b{x}^{2}}$=$\frac{abx-1}{b{x}^{2}}$,f′(1)=a-$\frac{1}{b}$,f(1)=$\frac{1}{b}$.
∵函数f(x)在点(1,f(1))处的切线方程为x-2y=0.
∴a-$\frac{1}{b}$=$\frac{1}{2}$,1-2×$\frac{1}{b}$=0,解得b=2,a=1.
(2)解:f(x)=lnx+$\frac{1}{2x}$.
当x>1时,f(x)-kx<0恒成立,
∴lnx+$\frac{1}{2x}$-kx<0,化为:k$>\frac{lnx}{x}$+$\frac{1}{2{x}^{2}}$=g(x).
g′(x)=$\frac{1-lnx}{{x}^{2}}$-$\frac{1}{{x}^{3}}$=$\frac{x-xlnx-1}{{x}^{3}}$.
令h(x)=x-xlnx-1,(x>1).
h′(x)=1-lnx-1=-lnx<0,
∴h(x)<h(1)=0,
∴g′(x)<0,∴函数g(x)在x∈(1,+∞)上单调递减.
∴k≥g(1)=$\frac{1}{2}$.
(3)证明:由(2)可知:x>1时,$\frac{lnx}{x}$+$\frac{1}{2{x}^{2}}$<$\frac{1}{2}$,化为$\frac{1}{xlnx}>\frac{2}{{x}^{2}-1}$,
令x=n≥2,则$\frac{1}{nlnn}$>$\frac{2}{{n}^{2}-1}$=$\frac{1}{n-1}-\frac{1}{n+1}$.
∴当n∈N*,且n≥2时,$\frac{1}{2ln2}$+$\frac{1}{3ln3}$+$\frac{1}{4ln4}$+…+$\frac{1}{nlnn}$>$(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-2}-\frac{1}{n})$+$(\frac{1}{n-1}-\frac{1}{n+1})$
=$\frac{3}{2}$-($\frac{1}{n}+\frac{1}{n+1}$)=$\frac{{3{n^2}-n-2}}{{2{n^2}+2n}}$.

点评 本题考查了利用导数研究函数的极值切线方程、证明不等式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\frac{1}{2}{x^2}-2alnx+(a-2)x,a∈R$
(Ⅰ)当a<0时,讨论函数f(x)的单调性;
(Ⅱ)证明:当$a≤-\frac{1}{2}$时,对任意的x1,x2∈(0,+∞),且x2>x1,都有f(x2)-ax2>f(x1)-ax1成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y2=4x的准线与x轴交于A点,焦点是F,P是位于x轴上方的抛物线上的任意一点,令m=$\frac{{|{PF}|}}{{|{PA}|}}$,当m取得最小值时,PA的斜率是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.近日石家庄狮身人面像拆除,围绕此事件的种种纷争,某媒体通过随机询问100名性别不同的居民对此的看法,得到表
认为就应依法拆除认为太可惜了
4510
3015
附:
P(K2≥k)0.100.050.025
k2.7063.8415.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过1%的前提下,认为“认为拆除太可惜了与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“认为拆除太可惜了与性别无关”
C.有90%以上的把握认为“认为拆除太可惜了与性别有关”
D.有90%以上的把握认为“认为拆除太可惜了与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式2x2-axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是(  )
A.a≤2$\sqrt{2}$B.a≤2$\sqrt{6}$C.a≤5D.a≤$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x2+(m+1)x+(m+1)的图象与x轴有公共点,则m的取值范围是(-∞,-1]∪[3,+∞)(用区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆C:$\frac{x^2}{4}+{y^2}$=1,过点D(0,4)的直线l与椭圆C交于不同两点M,N(M在D,N之间),有以下四个结论:
①若$\left\{{\begin{array}{l}{{x^'}=x}\\{{y^'}=2y}\end{array}}$,椭圆C变成曲线E,则曲线E的面积为4π;
②若A是椭圆C的右顶点,且∠MAN的角平分线是x轴,则直线l的斜率为-2;
③若以MN为直径的圆过原点O,则直线l的斜率为±2$\sqrt{5}$;
④若$\overrightarrow{DN}=λ\overrightarrow{DM}$,则λ的取值范围是1<λ≤$\frac{5}{3}$.
其中正确的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若关于x的一元二次方程3x2+2ax+1=0没有实数根,则a的取值范围是(  )
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.[-$\sqrt{3}$,$\sqrt{3}$]D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.斜棱柱侧棱长为1,侧面积为2,则直截面(垂直于侧棱且每一条侧棱都相交的截面)的周长为2.

查看答案和解析>>

同步练习册答案