| A. | a≤2$\sqrt{2}$ | B. | a≤2$\sqrt{6}$ | C. | a≤5 | D. | a≤$\frac{9}{2}$ |
分析 不等式等价变化为a≤$\frac{2{x}^{2}+3{y}^{2}}{xy}$=$\frac{2x}{y}$+$\frac{3y}{x}$,则求出函数Z=$\frac{2x}{y}$+$\frac{3y}{x}$的最小值即可.
解答 解:依题意,不等式2x2-axy+y2≤0等价为a≤$\frac{2{x}^{2}+3{y}^{2}}{xy}$=$\frac{2x}{y}$+$\frac{3y}{x}$,
设t=$\frac{y}{x}$,
∵x∈[1,2]及y∈[1,3],
∴$\frac{1}{2}$≤$\frac{1}{x}$≤1,即$\frac{1}{2}$≤$\frac{y}{x}$≤3,
∴$\frac{1}{2}$≤t≤3,
则Z=$\frac{2x}{y}$+$\frac{3y}{x}$=3t+$\frac{2}{t}$,
∵3t+$\frac{2}{t}$≥2$\sqrt{3t•\frac{2}{t}}$=2$\sqrt{6}$,
当且仅当3t=$\frac{2}{t}$,即t=$\frac{\sqrt{6}}{3}$时取等号,
故a≤2$\sqrt{6}$,
故选:B.
点评 本题主要考查不等式的应用,将不等式恒成立转化为求函数的最值是解决本题的关键,要求熟练掌握函数f(x)=x+$\frac{a}{x}$,a>0图象的单调性以及应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com