精英家教网 > 高中数学 > 题目详情
16.自然数按下列的规律排列

则上起第50行,左起第51列的数为2550.

分析 由题意可知根据数的排列特征,可以从行和列两个角度分析.

解答 解:经观察,这个自然数表的排列特征有:
①第一列的每一个数都是完全平方数,并且恰好等于它所在行数的平方,即第n行的第1个数为n2
②第一行第n个数为(n-1)2+1;
③第n行中从第1个数至第n个数依次递减1;
④第n列中从第1个数至第n个数依次递增1.
故上起第50行,左起第51列的数,应是第51列的第50个数,
即为[(51-1)2+1]+49=2550,
故答案为:2550.

点评 通过观察数表,由特殊数据来归纳、猜想、证明,进而得出一般规律,较好地考查了同学们阅读理解、获取信息、处理数据、归纳推理等能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知正四棱柱ABCD-A1B1C1D1中,AB=2,$C{C_1}=2\sqrt{2}$,E为棱CC1的中点,则直线AC1与平面BDE的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知三次函数f(x)=2ax3+6ax2+bx的导函数为f′(x),则函数f(x)与f′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校高二年级共有1600名学生,其中男生960名,女生640名,该校组织了一次满分为100分的数学学业水平模拟考试,根据研究,在正式的学业水平考试中,本次成绩在的学生可取得A等(优秀),在七组加以统计,绘制成频率分布直方图,如图是该频率分布直方图.
(Ⅰ)估计该校高二年级学生在正式的数学学业水平考试中,成绩不合格的人数;
(Ⅱ)请你根据已知条件将下列2×2列联表补充完整,并判断是否有90%的把握认为“该校高二年级学生在本次考试中数学成绩优秀与性别有关”?
数学成绩优秀数学成绩不优秀合计
男生a=12b=4860       
女生c=6d=3440
合计1882n=100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(k2≥k00.150.100.050.01
k02.0722.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A(0,1),B(2,-1),C(-1,3),向量$\overrightarrow{AD}$=(-4,2),
(1)求点D坐标;     
(2)若$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,求λ,μ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.不等式2x2-axy+3y2≥0对于任意x∈[1,2]及y∈[1,3]恒成立,则实数a的取值范围是(  )
A.a≤2$\sqrt{2}$B.a≤2$\sqrt{6}$C.a≤5D.a≤$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)解不等式|x-2|+|x-5|<5;
(2)如果关于x的不等式|x-2|+|x-5|<a的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线x2=-y+1与x轴交于A,B两点(A在B的左边),M为抛物线上不同于A,B的任意一点,则kMA-kMB=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=3sin($\frac{π}{4}$-3x)+$\sqrt{3}$cos($\frac{π}{4}$-3x)的最小正周期是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.8D.4

查看答案和解析>>

同步练习册答案