精英家教网 > 高中数学 > 题目详情
8.(1)解不等式|x-2|+|x-5|<5;
(2)如果关于x的不等式|x-2|+|x-5|<a的解集不是空集,求实数a的取值范围.

分析 (1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)利用绝对值三角不等式,求得|x-2|+|x-5|的最小值,可得实数a的取值范围.

解答 解:(1)不等式|x-2|+|x-5|<5,
等价于$\left\{\begin{array}{l}{x<2}\\{2-x+5-x<5}\end{array}\right.$ ①或,$\left\{\begin{array}{l}{2≤x≤5}\\{x-2+5-x<5}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>5}\\{x-2+x-5<5}\end{array}\right.$③.
解①求得1<x<2,解②求得2≤x≤5,解③求得5<x<6,
故原不等式的解集为(1,6).
(2)令y=|x-2|+|x-5|≥|x-2-(x-5)|=3,可得ymin=3,所以a>3.

点评 本题主要考查绝对值不等式的解法,绝对值三角不等式,函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某高校“统计初步”课程的教师为了判断主修统计专业是否与性别有关,随机调查了该选修课的一些学生情况.23名男生中,有10人是统计专业;27名女生中,有20人是统计专业.
(1)根据统计数据填写下面的2×2列联表.
非统计专业统计专业总计
总计
(2)如果判断主修统计专业与性别有关,那么这种判断出错的概率最大不超过多少?
附表:
P(k2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)若f(x)=|x-1|+|x-4|,求不等式f(x)≥5的解集;
(2)若g(x)=|x-1|+|x-a|(a∈R)且?x∈R使得f(x)≤4成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.自然数按下列的规律排列

则上起第50行,左起第51列的数为2550.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=$\frac{x}{2}$-sinx,$x∈(0,\frac{π}{2})$的单调递减区间是(  )
A.$(0,\frac{π}{6})$B.$(0,\frac{π}{3})$C.$(\frac{π}{6},\frac{π}{2})$D.$(\frac{π}{3},\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}{x^2}+ax-2{a^2}$lnx(a≠0).
(I)讨论函数f(x)的单调性;
(Ⅱ)若f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.数列{xn}的前n项和为Sn,且满足:若Sn=$\frac{3}{2}-\frac{1}{2}{x_n}$(x∈N*).
(1)求数列{xn}的通项公式;
(2)设数列{an}的各项为正,且满足an≤$\frac{{{x_n}{a_{n-1}}}}{{{x_n}+{a_{n-1}}}}$,a1=1,求证:a1x1+a2x2+a3x3+…+anxn<$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.观察下列各式:55=3125,56=15625,57=78125,…,则52016的末四位数字为(  )
A.3125B.5625C.0625D.8125

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,焦距与长轴长的比为$\frac{1}{2}$.
(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线l的方程;
(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

同步练习册答案