精英家教网 > 高中数学 > 题目详情
20.数列{xn}的前n项和为Sn,且满足:若Sn=$\frac{3}{2}-\frac{1}{2}{x_n}$(x∈N*).
(1)求数列{xn}的通项公式;
(2)设数列{an}的各项为正,且满足an≤$\frac{{{x_n}{a_{n-1}}}}{{{x_n}+{a_{n-1}}}}$,a1=1,求证:a1x1+a2x2+a3x3+…+anxn<$\frac{9}{8}$.

分析 (1)利用递推关系即可得出.
(2)${a_n}≤\frac{{{x_n}{a_{n-1}}}}{{{x_n}+{a_{n-1}}}}$,而an>0,xn>0,k可得 $\frac{1}{a_n}≥\frac{1}{x_n}+\frac{1}{{{a_{n-1}}}}\Rightarrow$ $\frac{1}{a_n}-\frac{1}{{{a_{n-1}}}}≥\frac{1}{x_n}$,利用“累加求和”方法可得 $\frac{1}{a_n}-\frac{1}{a_1}≥\frac{1}{x_2}+\frac{1}{x_3}+…+\frac{1}{x_n}$,再利用等比数列的求和公式可得:${a_n}≤\frac{2}{{{3^n}-1}}$.进而得出.

解答 解:(1)由${S_n}=\frac{3}{2}-\frac{1}{2}{x_n}$ …①,得:${S_1}=\frac{3}{2}-\frac{1}{2}{x_1}$,x1=1≠0.
当n≥2 时,${S_{n-1}}=\frac{3}{2}-\frac{1}{2}{x_{n-1}}$ …②,
①-②可得:${x_n}=\frac{1}{3}{x_{n-1}}$ (n≥2 ),∴${x_n}={({\frac{1}{3}})^{n-1}}$.
(2)${a_n}≤\frac{{{x_n}{a_{n-1}}}}{{{x_n}+{a_{n-1}}}}$,而an>0,xn>0,
$\therefore$ $\frac{1}{a_n}≥\frac{1}{x_n}+\frac{1}{{{a_{n-1}}}}\Rightarrow$ $\frac{1}{a_n}-\frac{1}{{{a_{n-1}}}}≥\frac{1}{x_n}$,
$\therefore$ $\frac{1}{a_n}-\frac{1}{a_1}≥\frac{1}{x_2}+\frac{1}{x_3}+…+\frac{1}{x_n}$,
∵a1=1,$\therefore$ $\frac{1}{a_n}≥1+\frac{1}{x_2}+\frac{1}{x_3}+…+\frac{1}{x_n}=1+3+{3^2}+…+{3^{n-1}}=\frac{{{3^n}-1}}{2}$,
$\therefore$ ${a_n}≤\frac{2}{{{3^n}-1}}$.
设Sn=a1x1+a2x2+a3x3+…+anxn,∵${S_n}={a_1}{x_1}+{a_2}{x_2}+{a_3}{x_3}+…+{a_n}{x_n}≤1×1+\frac{2}{8}×\frac{1}{3}+\frac{2}{26}×\frac{1}{9}+…+\frac{2}{{{3^n}-1}}×\frac{1}{{{3^{n-1}}}}$,
当n=1 时,${S_1}=1<\frac{9}{8}$ 当n=2 时,${S_2}≤1+\frac{1}{12}=\frac{13}{12}<\frac{9}{8}$,
当n≥3 时,${a_n}{x_n}≤\frac{2}{{({{3^n}-1}){3^{n-1}}}}<\frac{2}{{{3^{2n-1}}-{3^{n-1}}}}=\frac{2}{{2•{3^{2n-2}}+{3^{2n-2}}-{3^{n-1}}}}<\frac{1}{{{3^{2n-2}}}}$
$\therefore$ ${S_n}<1+\frac{1}{12}+({\frac{1}{9^2}+\frac{1}{9^3}+…+\frac{1}{{{9^{n-1}}}}})=\frac{79}{72}-\frac{1}{{{9^{n-1}}}}<\frac{79}{72}<\frac{9}{8}$.

点评 本题考查了数列的递推关系、“累加求和”、“裂项求和”方法、等比数列的求和公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为10,则(a,b)的值(  )
A.(4,-11)B.(-3,3)C.(4,-11)或(-3,3)D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点A(0,1),B(2,-1),C(-1,3),向量$\overrightarrow{AD}$=(-4,2),
(1)求点D坐标;     
(2)若$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,求λ,μ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)解不等式|x-2|+|x-5|<5;
(2)如果关于x的不等式|x-2|+|x-5|<a的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆锥曲线x2+ay2=1的一个焦点坐标为$F(\frac{2}{{\sqrt{|a|}}},0)$,则该圆锥曲线的离心率为$\frac{{2\sqrt{3}}}{3}$或$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线x2=-y+1与x轴交于A,B两点(A在B的左边),M为抛物线上不同于A,B的任意一点,则kMA-kMB=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知x0,x0+$\frac{π}{2}$是函数f(x)=${cos^2}(ωx-\frac{π}{6})-{sin^2}$ωx(ω>0)的两个相邻的零点.
(1)求f(x)的单调递减区间;
(2)若对任意$x∈[-\frac{7π}{12},0]$,都有|f(x)-m|≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C)的充要条件是$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AD}$),则λ的取值范围(  )
A.λ∈(0,1)B.λ∈(-1,0)C.λ∈(0,$\frac{\sqrt{2}}{2}$)D.λ∈(-$\frac{\sqrt{2}}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)求AC与PB所成的角;
(2)求面AMC与面BMC所成二面角余弦值的大小.

查看答案和解析>>

同步练习册答案