分析 (1)以A为坐标原点,分别以AD、AB、AP为x、y、z轴,建立空间直角坐标系,利用$cos<\overrightarrow{AC},\overrightarrow{PB}>$=$\frac{\overrightarrow{AC}•\overrightarrow{PB}}{|\overrightarrow{AC}||\overrightarrow{PB}|}$即可得出.
(2)设 $\overrightarrow{n}$=(x,y,z)为平面的ACM的一个法向量,则 $\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=0}\\{\overrightarrow{n}•×\overrightarrow{CM}=0}\end{array}\right.$,可得$\overrightarrow{n}$.设平面BMC的法向量为$\overrightarrow{m}$=(x0,y0,z0),则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{CM}=0}\end{array}\right.$,可得$\overrightarrow{m}$.利用cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}×\sqrt{6}}$=即可得出.
解答 解:(1)以A为坐标原点,分别以AD、AB、AP为x、y、z轴,建立空间直角坐标系,![]()
则A(0,0,0),P(0,0,1),C(1,1,0),B(0,2,0),M(0,1,$\frac{1}{2}$),
$\overrightarrow{AC}$=(1,1,0),$\overrightarrow{PB}$=(0,2,-1),
∴$cos<\overrightarrow{AC},\overrightarrow{PB}>$=$\frac{\overrightarrow{AC}•\overrightarrow{PB}}{|\overrightarrow{AC}||\overrightarrow{PB}|}$=$\frac{2}{\sqrt{2}×\sqrt{5}}$=$\frac{\sqrt{10}}{5}$.
∴AC与PB所成的角为arccos$\frac{\sqrt{10}}{5}$.
(2)$\overrightarrow{BC}$=(1,-1,0),$\overrightarrow{CM}$=(-1,0,$\frac{1}{2}$),
设 $\overrightarrow{n}$=(x,y,z)为平面的ACM的一个法向量,
则 $\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=0}\\{\overrightarrow{n}•×\overrightarrow{CM}=0}\end{array}\right.$,即 $\left\{\begin{array}{l}{x+y=0}\\{-x+\frac{1}{2}z=0}\end{array}\right.$,
取$\overrightarrow{n}$=(1,-1,2).
设平面BMC的法向量为$\overrightarrow{m}$=(x0,y0,z0),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{CM}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x-y=0}\\{-x+\frac{1}{2}z=0}\end{array}\right.$,取$\overrightarrow{m}$=(1,1,2).
则cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}×\sqrt{6}}$=$\frac{2}{3}$.
∵面AMC与面BMC所成二面角的平面角是钝角,因此余弦值的大小为-$\frac{2}{3}$.
点评 本题考查了空间线面面面垂直的判定与性质定理、二面角、异面直线所成的角、法向量的应用、向量夹角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4\sqrt{2}}{9}$ | B. | -$\frac{7}{9}$ | C. | -$\frac{4\sqrt{2}}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com