精英家教网 > 高中数学 > 题目详情
13.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)求AC与PB所成的角;
(2)求面AMC与面BMC所成二面角余弦值的大小.

分析 (1)以A为坐标原点,分别以AD、AB、AP为x、y、z轴,建立空间直角坐标系,利用$cos<\overrightarrow{AC},\overrightarrow{PB}>$=$\frac{\overrightarrow{AC}•\overrightarrow{PB}}{|\overrightarrow{AC}||\overrightarrow{PB}|}$即可得出.
(2)设 $\overrightarrow{n}$=(x,y,z)为平面的ACM的一个法向量,则 $\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=0}\\{\overrightarrow{n}•×\overrightarrow{CM}=0}\end{array}\right.$,可得$\overrightarrow{n}$.设平面BMC的法向量为$\overrightarrow{m}$=(x0,y0,z0),则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{CM}=0}\end{array}\right.$,可得$\overrightarrow{m}$.利用cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}×\sqrt{6}}$=即可得出.

解答 解:(1)以A为坐标原点,分别以AD、AB、AP为x、y、z轴,建立空间直角坐标系,
则A(0,0,0),P(0,0,1),C(1,1,0),B(0,2,0),M(0,1,$\frac{1}{2}$),
$\overrightarrow{AC}$=(1,1,0),$\overrightarrow{PB}$=(0,2,-1),
∴$cos<\overrightarrow{AC},\overrightarrow{PB}>$=$\frac{\overrightarrow{AC}•\overrightarrow{PB}}{|\overrightarrow{AC}||\overrightarrow{PB}|}$=$\frac{2}{\sqrt{2}×\sqrt{5}}$=$\frac{\sqrt{10}}{5}$.
∴AC与PB所成的角为arccos$\frac{\sqrt{10}}{5}$.
(2)$\overrightarrow{BC}$=(1,-1,0),$\overrightarrow{CM}$=(-1,0,$\frac{1}{2}$),
设 $\overrightarrow{n}$=(x,y,z)为平面的ACM的一个法向量,
则 $\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=0}\\{\overrightarrow{n}•×\overrightarrow{CM}=0}\end{array}\right.$,即 $\left\{\begin{array}{l}{x+y=0}\\{-x+\frac{1}{2}z=0}\end{array}\right.$,
取$\overrightarrow{n}$=(1,-1,2).
设平面BMC的法向量为$\overrightarrow{m}$=(x0,y0,z0),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=0}\\{\overrightarrow{m}•\overrightarrow{CM}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x-y=0}\\{-x+\frac{1}{2}z=0}\end{array}\right.$,取$\overrightarrow{m}$=(1,1,2).
则cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}×\sqrt{6}}$=$\frac{2}{3}$.
∵面AMC与面BMC所成二面角的平面角是钝角,因此余弦值的大小为-$\frac{2}{3}$.

点评 本题考查了空间线面面面垂直的判定与性质定理、二面角、异面直线所成的角、法向量的应用、向量夹角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.数列{xn}的前n项和为Sn,且满足:若Sn=$\frac{3}{2}-\frac{1}{2}{x_n}$(x∈N*).
(1)求数列{xn}的通项公式;
(2)设数列{an}的各项为正,且满足an≤$\frac{{{x_n}{a_{n-1}}}}{{{x_n}+{a_{n-1}}}}$,a1=1,求证:a1x1+a2x2+a3x3+…+anxn<$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cosθ=$\frac{1}{3}$,θ∈(0,π),则cos($\frac{π}{2}$+2θ)的值为(  )
A.$\frac{4\sqrt{2}}{9}$B.-$\frac{7}{9}$C.-$\frac{4\sqrt{2}}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,焦距与长轴长的比为$\frac{1}{2}$.
(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线l的方程;
(3)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线的中心在原点,焦点在x轴上,离心率为3,焦距为6,
(1)求该双曲线方程;
(2)是否存在过点P(1,1)的直线L与该双曲线交于A,B两点,且点P是线段AB 的中点?若存在,请求出直线L的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在R上的函数f(x)满足f′(x)-f(x)=(1-2x)e-x,且f(0)=0则下列命题正确的是①②③④.(写出所有正确命题的序号)
①f(x)有极大值,没有极小值;
②设曲线f(x)上存在不同两点A,B处的切线斜率均为k,则k的取值范围是$-\frac{1}{e^2}<k<0$;
③对任意x1,x2∈(2,+∞),都有$f({\frac{{{x_1}+{x_2}}}{2}})≤\frac{{f({x_1})+f({x_2})}}{2}$恒成立;
④当a≠b时,方程f(a)=f(b)有且仅有两对不同的实数解(a,b)满足ea,eb均为整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an},an=2an-1+3,a1=-1
(1)设bn=an+3,求证:{bn}为等比数列;
(2)求{$\frac{1}{lo{g}_{2}{b}_{n}lo{g}_{2}{b}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax3+bx2+cx+d的图象与x轴有三个不同交点(0,0),(x1,0),(x2,0),且f(x)在x=1,x=2时取得极值,则x1•x2的值为(  )
A.4B.5C.6D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.
(1)证明:A1C⊥平面BB1D1D;
(2)求平面C-OB1-B二面角θ的大小.

查看答案和解析>>

同步练习册答案