精英家教网 > 高中数学 > 题目详情
5.已知数列{an},an=2an-1+3,a1=-1
(1)设bn=an+3,求证:{bn}为等比数列;
(2)求{$\frac{1}{lo{g}_{2}{b}_{n}lo{g}_{2}{b}_{n+1}}$}的前n项和Sn

分析 (1)n≥2,an=2an-1+3,a1=-1,变形为an+3=2(an-1+3),即bn=2bn-1,即可证明.
(2)由(1)可得:bn=2n.$\frac{1}{lo{g}_{2}{b}_{n}lo{g}_{2}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂项求和”方法即可得出.

解答 (1)证明:∵n≥2,an=2an-1+3,a1=-1,∴an+3=2(an-1+3),
∴bn=2bn-1,b1=2,
∴{bn}为等比数列,首项为2,公比为2.
(2)解:由(1)可得:bn=2n
$\frac{1}{lo{g}_{2}{b}_{n}lo{g}_{2}{b}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴{$\frac{1}{lo{g}_{2}{b}_{n}lo{g}_{2}{b}_{n+1}}$}的前n项和Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

点评 本题考查了等比数列的通项公式、“裂项求和”方法、对数运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知x0,x0+$\frac{π}{2}$是函数f(x)=${cos^2}(ωx-\frac{π}{6})-{sin^2}$ωx(ω>0)的两个相邻的零点.
(1)求f(x)的单调递减区间;
(2)若对任意$x∈[-\frac{7π}{12},0]$,都有|f(x)-m|≤1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的两焦点,P为该椭圆C上的任意一点,△PF1F2的面积的最大值为$\sqrt{3}$,
且椭圆C过点(1,$\frac{\sqrt{3}}{2}$).
(I)求椭圆C的方程;
(II)点A为椭圆C的右顶点,过点B(1,0)作直线l与椭圆C相交于E,F两点,直线AE,AF与直线x=3分别交于不同的两点M,N,求$\overrightarrow{EM}$•$\overrightarrow{FN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)求AC与PB所成的角;
(2)求面AMC与面BMC所成二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设i为虚数单位,n为正整数.
(1)证明:(cosx+isinx)n=cosnx+isinnx;
(2)结合等式“[1+(cosx+isinx)]n=[(1+cosx)+isinx]n”,证明:1+${C}_{n}^{1}$cosx+${C}_{n}^{2}$cos2x+…+${C}_{n}^{n}$cosnx=2ncosn$\frac{x}{2}$cos$\frac{nx}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,集合A={x|x2-2x-3>0},B={x|2<x<4},那么集合(∁UA)∩B=(  )
A.{x|-1≤x≤4}B.{x|2<x≤3}C.{x|2≤x<3}D.{x|-1<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知ABCD为等腰梯形,AD∥BC,AD=2,M,N分别为AD,BC的中点,MN=$\sqrt{3}$,现以AD为边,作两个正三角形△EAD与△PAD,如图,其中平面EAD与平面ABCD共面,平面PAD⊥平面ABCD,Q为PE
的中点.
(Ⅰ)求证:平面QAD∥平面PBC;
(Ⅱ)求证:PE⊥平面PBC;
(Ⅲ)求AE与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x3-ax2-3x,其中a∈R.
(1)当a=4时,求f(x)在[-1,1]上的最大值;
(2)若f(x)在[1,+∞)上存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2-(2a+1)x,其中a为常数,且a≠0.
(1)当a=2时,求f(x)的单调区间;
(2)若f(x)在x=1处取得极值,且在(0,e]的最大值为1,求a的值.

查看答案和解析>>

同步练习册答案