分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可;
(2)求出函数的导数,根据二次函数的性质求出a的范围即可.
解答 解:(1)f(x)=x3-4x2-3x,f′(x)=3x2-8x-3=(3x+1)(x-3),
∴f(x)在(-1,-$\frac{1}{3}$)上单调递增,在(-$\frac{1}{3}$,1)上单调递减,
∴f(x)max=f(-$\frac{1}{3}$)=$\frac{14}{27}$;
(2)f′(x)=3x2-2ax-3,
∵f(x)在[1,+∞)上存在单调递减区间
∴①f′(1)<0,解得:a>0,
②$\left\{\begin{array}{l}{f′(1)≥0}\\{{x}_{0}=\frac{a}{3}>1}\end{array}\right.$,无解,
综上:a>0.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及二次函数的性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4\sqrt{2}}{9}$ | B. | -$\frac{7}{9}$ | C. | -$\frac{4\sqrt{2}}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0)∪(0,+∞) | B. | (0,+∞) | C. | (2015,+∞) | D. | (-∞,0)∪(2015,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com