精英家教网 > 高中数学 > 题目详情
3.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=$\sqrt{2}$.
(1)证明:A1C⊥平面BB1D1D;
(2)求平面C-OB1-B二面角θ的大小.

分析 (1)以O为原点,OA为x轴,OB为y轴,OA1为z轴,建立空间直角坐标系,利用向量法能证明A1C⊥平面BB1D1D.
(2)求出平面OCB1的一个法向量和平面BB1D1D的一个法向量,利用向量法能求出平面C-OB1-B二面角θ的大小.

解答 证明:(1)以O为原点,OA为x轴,OB为y轴,OA1为z轴,建立空间直角坐标系,
则由AB=AA1=$\sqrt{2}$,得A1(0,0,1),C(-1,0,0),B(0,1,0),D(0,-1,0),D1(-1,-1,1),
$\overrightarrow{{A}_{1}C}$=(-1,0,-1),$\overrightarrow{BD}$=(0,-2,0),$\overrightarrow{B{D}_{1}}$=(-1,-2,1),B1(-1,1,1),
$\overrightarrow{{A}_{1}C}$$•\overrightarrow{BD}$=0,$\overrightarrow{{A}_{1}C}•\overrightarrow{B{D}_{1}}$=0,
∴A1C⊥BD,A1C⊥BD1
又BD∩BD1=B,
∴A1C⊥平面BB1D1D.
解:(2)$\overrightarrow{OC}$=(-1,0,0),$\overrightarrow{O{B}_{1}}$=(-1,1,1),
设平面OCB1的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{OC}=-x=0}\\{\overrightarrow{n}•\overrightarrow{O{B}_{1}}=-x+y+z=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-1),
设平面BB1D1D的一个法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=-2b=0}\\{\overrightarrow{m}•\overrightarrow{B{D}_{1}}=-a-2b+c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,0,1),
则cosθ=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$|=$\frac{1}{2}$,
∴平面C-OB1-B二面角θ的大小为60°.

点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$AB=1,M是PB的中点.
(1)求AC与PB所成的角;
(2)求面AMC与面BMC所成二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=x3-ax2-3x,其中a∈R.
(1)当a=4时,求f(x)在[-1,1]上的最大值;
(2)若f(x)在[1,+∞)上存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.二面角α-l-β为60°,A、B是棱上的两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l且AB=AC=1,BD=2,则CD的长为(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=3,BC=4,AB=5,AA1=3
(1)求AC1与B1C所成角的余弦值
(2)求二面角A1-BC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-ax2-x(a∈R).
(1)当a=1时,求曲线f(x)在点(1,-2)处的切线方程;
(2)当a≤0时,讨论函数f(x)在其定义域内的单调性;
(3)若函数y=g(x)的图象上存在一点P(x0,g(x0)),使得以P为切点的切线l将其图象分割为c1,c2两部分,且c1,c2分别位于切线l的两侧(点P除外),则称x0为函数y=g(x)的“转点”,问函数y=f(x)(a≥0)是否存在这样的一个“转点”,若存在,求出这个“转点”,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2-(2a+1)x,其中a为常数,且a≠0.
(1)当a=2时,求f(x)的单调区间;
(2)若f(x)在x=1处取得极值,且在(0,e]的最大值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A1-BCD,则四面体A1-BCD的体积的最大值为$\frac{1}{6}$,此时A1C与平面A1BD所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)证明三倍角的余弦公式:cos3θ=4cos3θ-3cosθ;
(2)利用等式sin36°=cos54°,求sin18°的值.

查看答案和解析>>

同步练习册答案