精英家教网 > 高中数学 > 题目详情
6.在某市举行“市民奥运会”期间.组委会将甲,乙,丙,丁四位志愿者全部分配到A,B,C三个场馆执勤.若每个场馆至少分配一人,则不同分配方案的种数是(  )
A.96B.72C.36D.24

分析 根据题意,分2步进行分析,先将4人分为2、1、1的三组,再将分好的3组对应3个场馆,由排列、组合公式可得每一步的情况数目,由分步计数原理,计算可得答案.

解答 解:根据题意,将甲,乙,丙,丁四位志愿者全部分配到A,B,C三个场馆执勤.若每个场馆至少分配一人,
则其中1个场馆2人,其余2个场馆各1人,可以分2步进行分析:
①、将4人分成3组,其中1组2人,其余2组每组1人,有C42=6种分组方法,
②、将分好的3组对应3个场馆,有A33=6种对应方法,
则一共有6×6=36种同分配方案;
故选:C.

点评 本题考查排列、组合的运用,关键是根据“每个场馆至少分配一名志愿者”的要求,明确分组的依据与要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知点M(1,1)平分线段AB,且A(x,3),B(3,y),则x=1,y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知四边形ABCD满足AD∥BC,BA=AD=DC=$\frac{1}{2}$BC=a,E是
BC的中点,将△BAE沿AE折成△B1AE,使面B1AE⊥面AECD,F为B1D的中点.
(1)证明:AE⊥B1D;
(2)求二面角F-AC-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知|z1|=1,z2∈Z,求证|$\frac{{z}_{1}-{z}_{2}}{1-\overline{{z}_{1}}•{z}_{2}}$|=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知PE为圆eO的切线,切点为E,割线PBA交eO于A、B两点,C为AE上一点,且∠CPE=∠CPA.
(1)已知DE=3,PE=6,PB=4,求$\frac{PA}{BD}$的值;
(2)求证:$\frac{PE}{PB}$=$\frac{CA}{DE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知不等式|x-4|+|3-x|<a.
(1)当a=5时,解不等式;
(2)若不等式解集为空集,求a的取值范围;
(3)若不等式有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.现有六本书,其中两本相同,其余四本各不相同,分成三堆,每堆两本,则不同的分法的种数为(  )
A.9种B.12种C.15种D.18种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,既是偶函数又存在零点的是(  )
A.y=cosxB.y=sinxC.y=lnxD.y=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.sin15°+sin75°的值是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步练习册答案