精英家教网 > 高中数学 > 题目详情
13.一只口袋内装有大小相同的4只球,其中2只黑球,2只白球,从中一次随机摸出2只球,有1只黑球的概率是$\frac{2}{3}$.

分析 先求出基本事件总数n=${C}_{4}^{2}=6$,再求出有1只黑球包含的基本事件个数m=${C}_{2}^{1}{C}_{2}^{1}$=4,由此能求出有1只黑球的概率.

解答 解:一只口袋内装有大小相同的4只球,其中2只黑球,2只白球,从中一次随机摸出2只球,
基本事件总数n=${C}_{4}^{2}=6$,
有1只黑球包含的基本事件个数m=${C}_{2}^{1}{C}_{2}^{1}$=4,
∴有1只黑球的概率是p=$\frac{m}{n}$=$\frac{4}{6}$=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查概率的求法,考查古典概型等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,四边形ABCD是梯形,∠ABC=90°,BC∥AD,且$PA=AB=BC=\frac{1}{2}AD=1$.
(1)求直线PB与CD所成的角;
(2)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=-2,则|2$\overrightarrow{a}-\overrightarrow{b}$|=(  )
A.2B.2$\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在边长为2的正三角形△ABC中,D为BC的中点,E,F分别在边CA,AB上.
(1)若$DE=\sqrt{2}$,求CE的长;
(2)若∠EDF=60°,问:当∠CDE取何值时,△DEF的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,x),若$\overrightarrow{a}$•$\overrightarrow{b}$=3,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}$=8,设∠BAC=θ,△ABC的面积是S,且满足$\frac{{4\sqrt{3}}}{3}≤S≤4\sqrt{3}$.
(1)求θ的取值范围;
(2)求函数f(θ)=2sin2θ-$\sqrt{3}$sin2θ的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等比数列{an}的前n项和为Sn,公比q≠1,若$\frac{S_3}{S_2}=\frac{3}{2}$,则q的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正三棱柱ABC-A1B1C1中,D,E,M分别是线段BC,CC1,AB的中点,AA1=2AB=4.
(1)求证:DE∥平面A1MC;
(2)求点B到面MA1C的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如表所示:
月份i123456
单价xi(元)99.51010.5118
销售量yi(件)111086514
(1)根据1至5月份的数据,求解y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到
的回归方程是理想的,试问所得回归方程是否理想?
参考公式:回归直线的方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案