精英家教网 > 高中数学 > 题目详情
在直角坐标系上取两个定点,再取两个动点,且.
(Ⅰ)求直线交点的轨迹的方程;
(Ⅱ)已知点()是轨迹上的定点,是轨迹上的两个动点,如果直线的斜率与直线的斜率满足,试探究直线的斜率是否是定值?若是定值,求出这个定值,若不是,说明理由.
解:(Ⅰ)轨迹M的方程为
(Ⅱ)直线EF的斜率为定值,其值为
本试题主要考查了直线与直线的位置关系,以及直线与椭圆的位置关系的综合运用。(1) 依题意知直线的方程为:,直线的方程为:,利用交轨法得到轨迹方程的求解。
(2)设出直线方程与椭圆方程联立,运用韦达定理,和斜率公示得到结论。
(Ⅰ)依题意知直线的方程为:     ①……………2分
直线的方程为:       ②…………………3分
是直线交点,①×②得
  整理得            …………………4分
不与原点重合 ∴点不在轨迹M上…………………5分
∴轨迹M的方程为)…………………6分
(Ⅱ)∵点()在轨迹M上 ∴解得,即点A的坐标为
,则直线AE方程为:,代入并整理得
…………………9分
,,  ∵点在轨迹M上,
   ③,      ④………………11分
,将③、④式中的代换成,可得
…………………………12分
∴直线EF的斜率…………………13分


即直线EF的斜率为定值,其值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知抛物线的焦点与椭圆的一个焦点重合,过点的直线与抛物线交于两点,若,则的值(  )
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点F作直线交抛物线于两点,若,则的值为(  )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点为抛物线的焦点,为原点,点是抛物线准线上一动点,点在抛物线上,且,则的最小值为  ( )
A.6B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是曲线上任意一点,则点到直线的最小距离是(     )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

F1、F2是双曲线C:x2=1的两个焦点,P是C上一点,且△F1PF2是等腰直角三角形,则双曲线C的离心率为
A.1+B.2+
C.3-D.3+

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某曲线C的参数方程为,(t为参数,a∈R)点M(5,4)在该曲线上,(1)求常数a;(2)求曲线C的普通方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若双曲线的左、右顶点分别为,点是第一象限内双曲线上的点.若直线的倾斜角分别为,且,那么的值是       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,若双曲线的离心率为,则的值为        

查看答案和解析>>

同步练习册答案